1
|
Jiao F, Wei M, Leng J, Song Z, Hu W, Zhang Y. Theoretical Investigation of Switch Effect on the Efficiency and Adaptivity of Molecular Optoelectronic Conversion Devices. Chem Asian J 2022; 17:e202200463. [PMID: 35723224 DOI: 10.1002/asia.202200463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 05/25/2022] [Indexed: 11/12/2022]
Abstract
Molecular photoswitch can effectively regulate charge separation (CS) and charge recombination (CR) in donor-acceptor (D-A) systems. However, deformation of the donor-switch-acceptor (D-S-A) systems caused by the switch isomerization will destroy the geometrical stability of the battery. Here we take the planar platinum(II) terpyridyl complex of [Pt(t Bu3 tpy)(-C≡C-Ph)n ]+ as the typical D-A model, designed six D-S-A systems using different photoswitches (dimethyldihydropyrene, fulgimide, arylazopyrazole, N-salicylideneaniline, spiropyran, and dithienylethene, denoted as D-S-A 1-6 hereafter). Our investigations show that the D-S-A 1-6 can absorb visible light of 799 nm, 673 nm, 527 nm, 568 nm, 616 nm, and 629 nm, facilitating electrons transfer from the donor and the switch to the acceptor through the Switch-on channel. Then cationic character of the photoswitch can undergo much more rapid isomerization than the neutral form due to the lower energy barrier. The Switch-off isomer breaks the conjugation of the D-S-A system, effectively turning off the CT channel and forming the CS state. Based on the evaluated conjugated backbone twist (CBT) angle, we found that D-S-A 1, 2, 4, 6 exhibit little configurational change and can be good candidates as the organic solar cell. The proposed D-S-A design controlled by the molecular switch may help to develop a solution for solar-harvesting practical applications.
Collapse
Affiliation(s)
- Fangfang Jiao
- Shandong Provincial Key Laboratory of Molecular Engineering School of Chemistry and Chemical Engineering, Qilu University of Technology-Shandong Academy of Sciences, Jinan, Shandong, 250353, P. R. China
| | - Mingzhi Wei
- School of Materials Science & Engineering, Qilu University of Technology-Shandong Academy of Sciences, Jinan, Shandong, 250353, P. R. China
| | - Jiancai Leng
- School of Electronic and Information Engineering (Department of Physics), Qilu University of Technology-Shandong Academy of Sciences, Jinan, Shandong, 250353, P. R. China
| | - Ziyue Song
- Department of Chemical and Biological Engineering, University of British Columbia, 2360 E Mall, Vancouver, BC, Canada, V6T 1Z3
| | - Wei Hu
- Shandong Provincial Key Laboratory of Molecular Engineering School of Chemistry and Chemical Engineering, Qilu University of Technology-Shandong Academy of Sciences, Jinan, Shandong, 250353, P. R. China
| | - Yujin Zhang
- School of Electronic and Information Engineering (Department of Physics), Qilu University of Technology-Shandong Academy of Sciences, Jinan, Shandong, 250353, P. R. China
| |
Collapse
|
2
|
Jiao F, Wei M, Leng J, Cui M, Liu Z, Hu W, Zhang Y. Designing Self-Adaptive Donor-Switch-Acceptor for Molecular Opto-Electronic Conversion Based on Dimethyldihydropyrene/Cyclophanediene. Chem Asian J 2022; 17:e202200075. [PMID: 35266290 DOI: 10.1002/asia.202200075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/05/2022] [Indexed: 11/11/2022]
Abstract
Introduction of self-adaptive molecular switch is an appealing strategy to achieve complete charge separation (CS) in donor-acceptor (D-A) systems. Here we designed donor-switch-acceptor (D-S-A) systems using the platinum(II) terpyridyl complex as the acceptor, the dimethyldihydropyrene /cyclophanediene (DHP/CPD) as the bridge, and the methoxybenzene, thieno[3,2- b ]thiophene, 2,2'-bifuran, and 4,8-dimethoxybenzo[1,2-b:4,5-b']difuran as the donors, respectively. We then systematically studied the whole opto-electronic conversion process of the donor-DHP/CPD-acceptor (D-DHP/CPD-A) systems based on time-dependent density functional theory, time-dependent ultrafast electron evolution, and electron transport property calculations. We first found that the substitution of -CH 3 by -H and -CN groups in DHP/CPD can enlarge the range of the adsorption wavenumber in opto-electric conversion. Then the light absorption induces the cationization of DHP switch, largely accelerating the forth-isomerization to CPD form. Once the D-CPD-A molecule is formed, the poor conjugation can realize the complete CS state by inhibiting the radiative and nonradiative charge recombinations. Finally, the repeatable and complete CS can be achieved through the automatic back-isomerization of CPD to DHP. The present work provides valuable insights into design of D-S-A systems for practical utilization of molecule-based solar harvesting.
Collapse
Affiliation(s)
- Fangfang Jiao
- Qilu University of Technology, School of Chemistry and Chemical Engineering, CHINA
| | - Mingzhi Wei
- Qilu University of Technology, School of Materials Science & Engineering, CHINA
| | - Jiancai Leng
- Qilu University of Technology, School of Electronic and Information Engineering, CHINA
| | - Min Cui
- Qilu University of Technology, School of Chemistry and Chemical Engineering, CHINA
| | - Ziyu Liu
- Qilu University of Technology, School of Chemistry and Chemical Engineering, CHINA
| | - Wei Hu
- Qilu University of Technology, No. 3501 Daxue Road, Jinan, CHINA
| | - Yujin Zhang
- Qilu University of Technology, School of Electronic and Information Engineering, CHINA
| |
Collapse
|
3
|
Barthelmes K, Sittig M, Winter A, Schubert US. Molecular Dyads and Triads Based on Phenothiazine and π-Extended Tetrathiafulvalene Donors, Bis(terpyridine)ruthenium(II) Complexes, and Polyoxometalates. Eur J Inorg Chem 2017. [DOI: 10.1002/ejic.201700626] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Kevin Barthelmes
- Laboratory of Organic and Macromolecular Chemistry (IOMC); Friedrich Schiller University Jena; Humboldtstr. 10 07743 Jena Germany
- Center for Energy and Environmental Chemistry Jena (CEEC Jena); Friedrich Schiller University Jena; Philosophenweg 7a 07743 Jena Germany
| | - Maria Sittig
- Laboratory of Organic and Macromolecular Chemistry (IOMC); Friedrich Schiller University Jena; Humboldtstr. 10 07743 Jena Germany
| | - Andreas Winter
- Laboratory of Organic and Macromolecular Chemistry (IOMC); Friedrich Schiller University Jena; Humboldtstr. 10 07743 Jena Germany
- Center for Energy and Environmental Chemistry Jena (CEEC Jena); Friedrich Schiller University Jena; Philosophenweg 7a 07743 Jena Germany
| | - Ulrich S. Schubert
- Laboratory of Organic and Macromolecular Chemistry (IOMC); Friedrich Schiller University Jena; Humboldtstr. 10 07743 Jena Germany
- Center for Energy and Environmental Chemistry Jena (CEEC Jena); Friedrich Schiller University Jena; Philosophenweg 7a 07743 Jena Germany
| |
Collapse
|
4
|
Luo Y, Barthelmes K, Wächtler M, Winter A, Schubert US, Dietzek B. Energy versus Electron Transfer: Controlling the Excitation Transfer in Molecular Triads. Chemistry 2017; 23:4917-4922. [PMID: 28198051 DOI: 10.1002/chem.201700413] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Indexed: 01/23/2023]
Abstract
The photochemistry of RuII coordination compounds is generally discussed to originate from the lowest lying triplet metal-to-ligand charge-transfer state (3 MLCT). However, when heteroleptic complexes are considered, for example, in the design of molecular triads for efficient photoinduced charge separation, a complex structure of 1 MLCT states, which can be populated in a rather narrow spectral window (typically around 450 nm) is to be considered. In this contribution we show that the localization of MLCT excited states on different ligands can affect the following ps to ns decay pathways to an extent that by tuning the excitation wavelength, intermolecular energy transfer from a RuII -terpyridine unit to a fullerene acceptor can be favored over electron transfer within the molecular triad. These results might have important implications for the design of molecular dyads, triads, pentads and so forth with respect to a specifically targeted response of these complexes to photoexcitation.
Collapse
Affiliation(s)
- Yusen Luo
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich-Schiller-University Jena, Helmholtzweg 4, 07743, Jena, Germany.,Leibniz Institute of Photonic Technology (IPHT), Albert-Einstein-Strasse 9, 07745, Jena, Germany
| | - Kevin Barthelmes
- Jena Center for Soft Matter (JCSM), Friedrich-Schiller-University Jena, Philosophenweg 7, 07743, Jena, Germany.,Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich-Schiller-University Jena, Humboldtstrasse 10, 07743, Jena, Germany
| | - Maria Wächtler
- Leibniz Institute of Photonic Technology (IPHT), Albert-Einstein-Strasse 9, 07745, Jena, Germany
| | - Andreas Winter
- Jena Center for Soft Matter (JCSM), Friedrich-Schiller-University Jena, Philosophenweg 7, 07743, Jena, Germany.,Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich-Schiller-University Jena, Humboldtstrasse 10, 07743, Jena, Germany
| | - Ulrich S Schubert
- Jena Center for Soft Matter (JCSM), Friedrich-Schiller-University Jena, Philosophenweg 7, 07743, Jena, Germany.,Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich-Schiller-University Jena, Humboldtstrasse 10, 07743, Jena, Germany
| | - Benjamin Dietzek
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich-Schiller-University Jena, Helmholtzweg 4, 07743, Jena, Germany.,Leibniz Institute of Photonic Technology (IPHT), Albert-Einstein-Strasse 9, 07745, Jena, Germany.,Jena Center for Soft Matter (JCSM), Friedrich-Schiller-University Jena, Philosophenweg 7, 07743, Jena, Germany
| |
Collapse
|
5
|
Vela S, Bauroth S, Atienza C, Molina-Ontoria A, Guldi DM, Martín N. Determining the Attenuation Factor in Molecular Wires Featuring Covalent and Noncovalent Tectons. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201608973] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Sonia Vela
- Departamento de Química Orgánica I; Facultad de Químicas; Universidad Complutense de Madrid; 28040 Madrid Spain
| | - Stefan Bauroth
- Department of Chemistry and Pharmacy and; Interdisciplinary Center for Molecular Materials; University of Erlangen-Nuremberg; Erlandstrasse 3 91058 Erlangen Germany
| | - Carmen Atienza
- Departamento de Química Orgánica I; Facultad de Químicas; Universidad Complutense de Madrid; 28040 Madrid Spain
| | | | - Dirk M. Guldi
- Department of Chemistry and Pharmacy and; Interdisciplinary Center for Molecular Materials; University of Erlangen-Nuremberg; Erlandstrasse 3 91058 Erlangen Germany
| | - Nazario Martín
- Departamento de Química Orgánica I; Facultad de Químicas; Universidad Complutense de Madrid; 28040 Madrid Spain
- IMDEA-Nanociencia; C/ Faraday 9, Campus UAM 28049 Madrid Spain
| |
Collapse
|
6
|
Vela S, Bauroth S, Atienza C, Molina-Ontoria A, Guldi DM, Martín N. Determining the Attenuation Factor in Molecular Wires Featuring Covalent and Noncovalent Tectons. Angew Chem Int Ed Engl 2016; 55:15076-15080. [DOI: 10.1002/anie.201608973] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Indexed: 01/25/2023]
Affiliation(s)
- Sonia Vela
- Departamento de Química Orgánica I; Facultad de Químicas; Universidad Complutense de Madrid; 28040 Madrid Spain
| | - Stefan Bauroth
- Department of Chemistry and Pharmacy and; Interdisciplinary Center for Molecular Materials; University of Erlangen-Nuremberg; Erlandstrasse 3 91058 Erlangen Germany
| | - Carmen Atienza
- Departamento de Química Orgánica I; Facultad de Químicas; Universidad Complutense de Madrid; 28040 Madrid Spain
| | | | - Dirk M. Guldi
- Department of Chemistry and Pharmacy and; Interdisciplinary Center for Molecular Materials; University of Erlangen-Nuremberg; Erlandstrasse 3 91058 Erlangen Germany
| | - Nazario Martín
- Departamento de Química Orgánica I; Facultad de Químicas; Universidad Complutense de Madrid; 28040 Madrid Spain
- IMDEA-Nanociencia; C/ Faraday 9, Campus UAM 28049 Madrid Spain
| |
Collapse
|
7
|
Wang T, Sun H, Lu T, Weerasinghe KC, Liu D, Hu W, Zhou X, Wang L, Li W, Liu L. Tuning photophysical properties and electronic energy levels of 1-aminoanthraquinone derivatives by introducing N-ethyl substituent. J Mol Struct 2016. [DOI: 10.1016/j.molstruc.2016.03.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
8
|
Moreno J, Schweighöfer F, Wachtveitl J, Hecht S. Reversible Photomodulation of Electronic Communication in a π-Conjugated Photoswitch-Fluorophore Molecular Dyad. Chemistry 2015; 22:1070-5. [PMID: 26667670 DOI: 10.1002/chem.201503419] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 10/22/2015] [Indexed: 11/06/2022]
Abstract
The extent of electronic coupling between a boron dipyrromethene (BODIPY) fluorophore and a diarylethene (DAE) photoswitch has been modulated in a covalently linked molecular dyad by irradiation with either UV or visible light. In the open isomer, both moieties can be regarded as individual chromophores, while in the closed form the lowest electronic (S0 →S1 ) transition of the dyad is slightly shifted, enabling photomodulation of its fluorescence. Transient spectroscopy confirms that the dyad behaves dramatically different in the two switching states: while in the open isomer it resembles an undisturbed BODIPY fluorophore, in the closed isomer no fluorescence occurs and instead a red-shifted DAE behavior prevails.
Collapse
Affiliation(s)
- Javier Moreno
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Strasse 2, 12489, Berlin, Germany
| | - Felix Schweighöfer
- Institute of Physical and Theoretical, Goethe-Universität Frankfurt, Max-von-Laue Strasse 7, 60438, Frankfurt/M., Germany
| | - Josef Wachtveitl
- Institute of Physical and Theoretical, Goethe-Universität Frankfurt, Max-von-Laue Strasse 7, 60438, Frankfurt/M., Germany.
| | - Stefan Hecht
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Strasse 2, 12489, Berlin, Germany.
| |
Collapse
|