1
|
de Lima Oliveira R, Nicinski K, Pisarek M, Kaminska A, Thomas A, Pasternak G, Colmenares JC. Porous heteroatom‐doped carbons: efficient catalysts for selective oxidation of alcohols by activated persulfate. ChemCatChem 2022. [DOI: 10.1002/cctc.202200787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Rafael de Lima Oliveira
- Institute of Low Temperature and Structure ResearchPolish Academy of Sciences: Instytut Niskich Temperatur i Baden Strukturalnych im Wlodzimierza Trzebiatowskiego Polskiej Akademii Nauk Catalysis and Nanomaterials Okólna 2, 03948 Wroclaw POLAND
| | - Krzysztof Nicinski
- Institute of Physical Chemistry Polish Academy of Sciences: Polska Akademia Nauk Instytut Chemii Fizycznej Catalysis POLAND
| | - Marcin Pisarek
- Institute of Physical Chemistry Polish Academy of Sciences: Polska Akademia Nauk Instytut Chemii Fizycznej Catalysis POLAND
| | - Agnieszka Kaminska
- Institute of Physical Chemistry Polish Academy of Sciences: Polska Akademia Nauk Instytut Chemii Fizycznej Catalysis POLAND
| | - Arne Thomas
- TU Berlin: Technische Universitat Berlin Chemistry POLAND
| | - Grzegorz Pasternak
- Wroclaw University of Technology: Politechnika Wroclawska Material Science POLAND
| | - Juan C. Colmenares
- Institute of Physical Chemistry Polish Academy of Sciences: Polska Akademia Nauk Instytut Chemii Fizycznej Catalysis POLAND
| |
Collapse
|
2
|
Ge G, Wei X, Guo H, Zhao Z. Assembly‐in‐Foam Approach to Construct Nanodiamond/Carbon Nanotube Hybrid Monolithic Carbocatalysts for Direct Dehydrogenation of Ethylbenzene to Styrene. Eur J Inorg Chem 2022. [DOI: 10.1002/ejic.202200232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Guifang Ge
- Dalian University of Technology State Key Laboratory of Fine Chemicals CHINA
| | - Xiaojing Wei
- Dalian University of Technology State Key Laboratory of Fine Chemicals CHINA
| | - Hongchen Guo
- Dalian University of Technology State Key Laboratory of Fine Chemicals CHINA
| | - Zhongkui Zhao
- Dalian University of Technology Department of Catalysis Chemistry and Engineering No 2 Linggong Road 116024 Dalian CHINA
| |
Collapse
|
3
|
Chen S, Luo T, Chen K, Lin Y, Fu J, Liu K, Cai C, Wang Q, Li H, Li X, Hu J, Li H, Zhu M, Liu M. Chemical Identification of Catalytically Active Sites on Oxygen-doped Carbon Nanosheet to Decipher the High Activity for Electro-synthesis Hydrogen Peroxide. Angew Chem Int Ed Engl 2021; 60:16607-16614. [PMID: 33982396 DOI: 10.1002/anie.202104480] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/10/2021] [Indexed: 11/06/2022]
Abstract
Electrochemical production of hydrogen peroxide (H2 O2 ) through two-electron (2 e- ) oxygen reduction reaction (ORR) is an on-site and clean route. Oxygen-doped carbon materials with high ORR activity and H2 O2 selectivity have been considered as the promising catalysts, however, there is still a lack of direct experimental evidence to identify true active sites at the complex carbon surface. Herein, we propose a chemical titration strategy to decipher the oxygen-doped carbon nanosheet (OCNS900 ) catalyst for 2 e- ORR. The OCNS900 exhibits outstanding 2 e- ORR performances with onset potential of 0.825 V (vs. RHE), mass activity of 14.5 A g-1 at 0.75 V (vs. RHE) and H2 O2 production rate of 770 mmol g-1 h-1 in flow cell, surpassing most reported carbon catalysts. Through selective chemical titration of C=O, C-OH, and COOH groups, we found that C=O species contributed to the most electrocatalytic activity and were the most active sites for 2 e- ORR, which were corroborated by theoretical calculations.
Collapse
Affiliation(s)
- Shanyong Chen
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, 511443, Guangzhou, China
| | - Tao Luo
- State Key Laboratory of Powder Metallurgy, School of Physical and Electronics, Central South University, 410083, Changsha, China
| | - Kejun Chen
- State Key Laboratory of Powder Metallurgy, School of Physical and Electronics, Central South University, 410083, Changsha, China
| | - Yiyang Lin
- State Key Laboratory of Powder Metallurgy, School of Physical and Electronics, Central South University, 410083, Changsha, China
| | - Junwei Fu
- State Key Laboratory of Powder Metallurgy, School of Physical and Electronics, Central South University, 410083, Changsha, China
| | - Kang Liu
- State Key Laboratory of Powder Metallurgy, School of Physical and Electronics, Central South University, 410083, Changsha, China
| | - Chao Cai
- State Key Laboratory of Powder Metallurgy, School of Physical and Electronics, Central South University, 410083, Changsha, China
| | - Qiyou Wang
- State Key Laboratory of Powder Metallurgy, School of Physical and Electronics, Central South University, 410083, Changsha, China
| | - Huangjingwei Li
- State Key Laboratory of Powder Metallurgy, School of Physical and Electronics, Central South University, 410083, Changsha, China
| | - Xiaoqing Li
- State Key Laboratory of Powder Metallurgy, School of Physical and Electronics, Central South University, 410083, Changsha, China
| | - Junhua Hu
- School of Materials Science and Engineering, Zhengzhou University, 450002, Zhengzhou, China
| | - Hongmei Li
- State Key Laboratory of Powder Metallurgy, School of Physical and Electronics, Central South University, 410083, Changsha, China
| | - Mingshan Zhu
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, 511443, Guangzhou, China
| | - Min Liu
- State Key Laboratory of Powder Metallurgy, School of Physical and Electronics, Central South University, 410083, Changsha, China
| |
Collapse
|
4
|
Chen S, Luo T, Chen K, Lin Y, Fu J, Liu K, Cai C, Wang Q, Li H, Li X, Hu J, Li H, Zhu M, Liu M. Chemical Identification of Catalytically Active Sites on Oxygen‐doped Carbon Nanosheet to Decipher the High Activity for Electro‐synthesis Hydrogen Peroxide. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202104480] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Shanyong Chen
- Guangdong Key Laboratory of Environmental Pollution and Health School of Environment Jinan University 511443 Guangzhou China
| | - Tao Luo
- State Key Laboratory of Powder Metallurgy School of Physical and Electronics Central South University 410083 Changsha China
| | - Kejun Chen
- State Key Laboratory of Powder Metallurgy School of Physical and Electronics Central South University 410083 Changsha China
| | - Yiyang Lin
- State Key Laboratory of Powder Metallurgy School of Physical and Electronics Central South University 410083 Changsha China
| | - Junwei Fu
- State Key Laboratory of Powder Metallurgy School of Physical and Electronics Central South University 410083 Changsha China
| | - Kang Liu
- State Key Laboratory of Powder Metallurgy School of Physical and Electronics Central South University 410083 Changsha China
| | - Chao Cai
- State Key Laboratory of Powder Metallurgy School of Physical and Electronics Central South University 410083 Changsha China
| | - Qiyou Wang
- State Key Laboratory of Powder Metallurgy School of Physical and Electronics Central South University 410083 Changsha China
| | - Huangjingwei Li
- State Key Laboratory of Powder Metallurgy School of Physical and Electronics Central South University 410083 Changsha China
| | - Xiaoqing Li
- State Key Laboratory of Powder Metallurgy School of Physical and Electronics Central South University 410083 Changsha China
| | - Junhua Hu
- School of Materials Science and Engineering Zhengzhou University 450002 Zhengzhou China
| | - Hongmei Li
- State Key Laboratory of Powder Metallurgy School of Physical and Electronics Central South University 410083 Changsha China
| | - Mingshan Zhu
- Guangdong Key Laboratory of Environmental Pollution and Health School of Environment Jinan University 511443 Guangzhou China
| | - Min Liu
- State Key Laboratory of Powder Metallurgy School of Physical and Electronics Central South University 410083 Changsha China
| |
Collapse
|
5
|
Lu X, Wu K, Zhang B, Chen J, Li F, Su B, Yan P, Chen J, Qi W. Highly Efficient Electro‐reforming of 5‐Hydroxymethylfurfural on Vertically Oriented Nickel Nanosheet/Carbon Hybrid Catalysts: Structure–Function Relationships. Angew Chem Int Ed Engl 2021; 60:14528-14535. [DOI: 10.1002/anie.202102359] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/17/2021] [Indexed: 12/30/2022]
Affiliation(s)
- Xingyu Lu
- Shenyang National Laboratory for Materials Science Institute of Metal Research Chinese Academy of Sciences Shenyang Liaoning 110016 China
- School of Materials Science and Engineering University of Science and Technology of China Shenyang Liaoning 110016 China
| | - Kuang‐Hsu Wu
- Shenyang National Laboratory for Materials Science Institute of Metal Research Chinese Academy of Sciences Shenyang Liaoning 110016 China
- School of Materials Science and Engineering University of Science and Technology of China Shenyang Liaoning 110016 China
- School of Chemical Engineering The University of New South Wales Sydney, Kensington NSW 2052 Australia
| | - Bingsen Zhang
- Shenyang National Laboratory for Materials Science Institute of Metal Research Chinese Academy of Sciences Shenyang Liaoning 110016 China
- School of Materials Science and Engineering University of Science and Technology of China Shenyang Liaoning 110016 China
| | - Junnan Chen
- Shenyang National Laboratory for Materials Science Institute of Metal Research Chinese Academy of Sciences Shenyang Liaoning 110016 China
- School of Materials Science and Engineering University of Science and Technology of China Shenyang Liaoning 110016 China
| | - Fan Li
- Shenyang National Laboratory for Materials Science Institute of Metal Research Chinese Academy of Sciences Shenyang Liaoning 110016 China
- School of Materials Science and Engineering University of Science and Technology of China Shenyang Liaoning 110016 China
| | - Bing‐Jian Su
- National Synchrotron Radiation Research Center Hsinchu (Taiwan), R.O.C. 30076 China
| | - Pengqiang Yan
- Shenyang National Laboratory for Materials Science Institute of Metal Research Chinese Academy of Sciences Shenyang Liaoning 110016 China
- School of Materials Science and Engineering University of Science and Technology of China Shenyang Liaoning 110016 China
| | - Jin‐Ming Chen
- National Synchrotron Radiation Research Center Hsinchu (Taiwan), R.O.C. 30076 China
| | - Wei Qi
- Shenyang National Laboratory for Materials Science Institute of Metal Research Chinese Academy of Sciences Shenyang Liaoning 110016 China
- School of Materials Science and Engineering University of Science and Technology of China Shenyang Liaoning 110016 China
| |
Collapse
|
6
|
Lu X, Wu K, Zhang B, Chen J, Li F, Su B, Yan P, Chen J, Qi W. Highly Efficient Electro‐reforming of 5‐Hydroxymethylfurfural on Vertically Oriented Nickel Nanosheet/Carbon Hybrid Catalysts: Structure–Function Relationships. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202102359] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Xingyu Lu
- Shenyang National Laboratory for Materials Science Institute of Metal Research Chinese Academy of Sciences Shenyang Liaoning 110016 China
- School of Materials Science and Engineering University of Science and Technology of China Shenyang Liaoning 110016 China
| | - Kuang‐Hsu Wu
- Shenyang National Laboratory for Materials Science Institute of Metal Research Chinese Academy of Sciences Shenyang Liaoning 110016 China
- School of Materials Science and Engineering University of Science and Technology of China Shenyang Liaoning 110016 China
- School of Chemical Engineering The University of New South Wales Sydney, Kensington NSW 2052 Australia
| | - Bingsen Zhang
- Shenyang National Laboratory for Materials Science Institute of Metal Research Chinese Academy of Sciences Shenyang Liaoning 110016 China
- School of Materials Science and Engineering University of Science and Technology of China Shenyang Liaoning 110016 China
| | - Junnan Chen
- Shenyang National Laboratory for Materials Science Institute of Metal Research Chinese Academy of Sciences Shenyang Liaoning 110016 China
- School of Materials Science and Engineering University of Science and Technology of China Shenyang Liaoning 110016 China
| | - Fan Li
- Shenyang National Laboratory for Materials Science Institute of Metal Research Chinese Academy of Sciences Shenyang Liaoning 110016 China
- School of Materials Science and Engineering University of Science and Technology of China Shenyang Liaoning 110016 China
| | - Bing‐Jian Su
- National Synchrotron Radiation Research Center Hsinchu (Taiwan), R.O.C. 30076 China
| | - Pengqiang Yan
- Shenyang National Laboratory for Materials Science Institute of Metal Research Chinese Academy of Sciences Shenyang Liaoning 110016 China
- School of Materials Science and Engineering University of Science and Technology of China Shenyang Liaoning 110016 China
| | - Jin‐Ming Chen
- National Synchrotron Radiation Research Center Hsinchu (Taiwan), R.O.C. 30076 China
| | - Wei Qi
- Shenyang National Laboratory for Materials Science Institute of Metal Research Chinese Academy of Sciences Shenyang Liaoning 110016 China
- School of Materials Science and Engineering University of Science and Technology of China Shenyang Liaoning 110016 China
| |
Collapse
|
7
|
Zhou Q, Zhao Z. Sulfate Surfactant Assisted Approach to Fabricate Sulphur‐Doped Supported Nanodiamond Catalyst on Carbon Nanotube with Unprecedented Catalysis for Ethylbenzene Dehydrogenation. ChemCatChem 2019. [DOI: 10.1002/cctc.201901267] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Qin Zhou
- State Key Laboratory of Fine Chemicals Department of Catalysis Chemistry and Engineering School of Chemical EngineeringDalian University of Technology Dalian 116024 P. R. China
| | - Zhongkui Zhao
- State Key Laboratory of Fine Chemicals Department of Catalysis Chemistry and Engineering School of Chemical EngineeringDalian University of Technology Dalian 116024 P. R. China
| |
Collapse
|
8
|
Ge G, Liu H, Zhao Z. Three‐Dimensional Interconnected Porous Nitrogen‐Doped Carbon Hybrid Foam for Notably Promoted Direct Dehydrogenation of Ethylbenzene to Styrene. ChemCatChem 2019. [DOI: 10.1002/cctc.201901291] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Guifang Ge
- State Key Laboratory of Fine Chemicals Department of Catalysis Chemistry and Engineering School of Chemical EngineeringDalian University of Technology Dalian 116024 P.R. China
| | - Hongyang Liu
- Shenyang National Laboratory for Materials Science Institute of Metal ResearchChinese Academy of Sciences Shenyang 110016 P.R. China
| | - Zhongkui Zhao
- State Key Laboratory of Fine Chemicals Department of Catalysis Chemistry and Engineering School of Chemical EngineeringDalian University of Technology Dalian 116024 P.R. China
| |
Collapse
|
9
|
Wirtanen T, Aikonen S, Muuronen M, Melchionna M, Kemell M, Davodi F, Kallio T, Hu T, Helaja J. Carbocatalytic Oxidative Dehydrogenative Couplings of (Hetero)Aryls by Oxidized Multi‐Walled Carbon Nanotubes in Liquid Phase. Chemistry 2019; 25:12288-12293. [DOI: 10.1002/chem.201903054] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Indexed: 01/08/2023]
Affiliation(s)
- Tom Wirtanen
- Department of ChemistryUniversity of Helsinki A. I. Virtasen aukio 1, P.O. Box 55 00014 Helsinki Finland
- Current address: Institute of Organic ChemistryJohannes Gutenberg-University Mainz Duesbergweg 10–14 55128 Mainz Germany
| | - Santeri Aikonen
- Department of ChemistryUniversity of Helsinki A. I. Virtasen aukio 1, P.O. Box 55 00014 Helsinki Finland
| | - Mikko Muuronen
- Department of ChemistryUniversity of Helsinki A. I. Virtasen aukio 1, P.O. Box 55 00014 Helsinki Finland
| | - Michele Melchionna
- Department of Chemical and Pharmaceutical SciencesUniversity of Trieste Via L. Giorgieri 1 34127 Trieste Italy
| | - Marianna Kemell
- Department of ChemistryUniversity of Helsinki A. I. Virtasen aukio 1, P.O. Box 55 00014 Helsinki Finland
| | - Fatemeh Davodi
- Department of Chemistry and Materials ScienceAalto University, P.O Box 16100 00076 Aalto Finland
| | - Tanja Kallio
- Department of Chemistry and Materials ScienceAalto University, P.O Box 16100 00076 Aalto Finland
| | - Tao Hu
- Research Unit of Sustainable ChemistryFaculty of TechnologyUniversity of Oulu 90014 Oulu Finland
| | - Juho Helaja
- Department of ChemistryUniversity of Helsinki A. I. Virtasen aukio 1, P.O. Box 55 00014 Helsinki Finland
| |
Collapse
|
10
|
Ding Y, Schlögl R, Heumann S. The Role of Supported Atomically Distributed Metal Species in Electrochemistry and How to Create Them. ChemElectroChem 2019. [DOI: 10.1002/celc.201900598] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Yuxiao Ding
- Max Planck Institute for Chemical Energy ConversionDepartment of Heterogeneous Reactions Stiftststraße 34–36 Mülheim an der Ruhr 45470
| | - Robert Schlögl
- Max Planck Institute for Chemical Energy ConversionDepartment of Heterogeneous Reactions Stiftststraße 34–36 Mülheim an der Ruhr 45470
| | - Saskia Heumann
- Max Planck Institute for Chemical Energy ConversionDepartment of Heterogeneous Reactions Stiftststraße 34–36 Mülheim an der Ruhr 45470
| |
Collapse
|
11
|
Tian S, Yan P, Li F, Zhang X, Su D, Qi W. Fabrication of Polydopamine Modified Carbon Nanotube Hybrids and their Catalytic Activity in Ethylbenzene Dehydrogenation. ChemCatChem 2019. [DOI: 10.1002/cctc.201900146] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Siyuan Tian
- Shenyang National Laboratory for Materials ScienceInstitute of Metal ResearchChinese Academy of Sciences 72 Wenhua Road Shenyang 110016 P. R. China
- School of Materials Science and EngineeringUniversity of Science and Technology of China 72 Wenhua Road Shenyang 110016 P. R. China
| | - Pengqiang Yan
- Shenyang National Laboratory for Materials ScienceInstitute of Metal ResearchChinese Academy of Sciences 72 Wenhua Road Shenyang 110016 P. R. China
| | - Fan Li
- Shenyang National Laboratory for Materials ScienceInstitute of Metal ResearchChinese Academy of Sciences 72 Wenhua Road Shenyang 110016 P. R. China
- School of Materials Science and EngineeringUniversity of Science and Technology of China 72 Wenhua Road Shenyang 110016 P. R. China
| | - Xuefei Zhang
- Shenyang National Laboratory for Materials ScienceInstitute of Metal ResearchChinese Academy of Sciences 72 Wenhua Road Shenyang 110016 P. R. China
| | - Dangsheng Su
- Shenyang National Laboratory for Materials ScienceInstitute of Metal ResearchChinese Academy of Sciences 72 Wenhua Road Shenyang 110016 P. R. China
| | - Wei Qi
- Shenyang National Laboratory for Materials ScienceInstitute of Metal ResearchChinese Academy of Sciences 72 Wenhua Road Shenyang 110016 P. R. China
- School of Materials Science and EngineeringUniversity of Science and Technology of China 72 Wenhua Road Shenyang 110016 P. R. China
| |
Collapse
|
12
|
Wang C, Liu W, Wei S, Su D, Qi W. Oxidative Dehydrogenation on Nanocarbon: Revealing the Reaction Mechanism via In Situ Experimental Strategies. ChemCatChem 2018. [DOI: 10.1002/cctc.201801547] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Chao Wang
- School of Medical DevicesShenyang Pharmaceutical University No. 103 Wenhua Road Shenyang 110016 P. R. China
| | - Wei Liu
- Shenyang National Laboratory for Materials ScienceInstitute of Metal ResearchChinese Academy of Sciences No. 72 Wenhua Road Shenyang 110000 P. R. China
| | - Shimeng Wei
- Shenyang National Laboratory for Materials ScienceInstitute of Metal ResearchChinese Academy of Sciences No. 72 Wenhua Road Shenyang 110000 P. R. China
| | - Dangsheng Su
- Shenyang National Laboratory for Materials ScienceInstitute of Metal ResearchChinese Academy of Sciences No. 72 Wenhua Road Shenyang 110000 P. R. China
| | - Wei Qi
- Shenyang National Laboratory for Materials ScienceInstitute of Metal ResearchChinese Academy of Sciences No. 72 Wenhua Road Shenyang 110000 P. R. China
| |
Collapse
|
13
|
Gao XJ, Wang WF, Gu YY, Zhang ZZ, Zhang JF, Zhang QD, Tsubaki N, Han YZ, Tan YS. Synthesis of Polyoxymethylene Dimethyl Ethers from Dimethyl Ether Direct Oxidation over Carbon-Based Catalysts. ChemCatChem 2017. [DOI: 10.1002/cctc.201701213] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Xiu-Juan Gao
- State Key Laboratory of Coal Conversion; Institute of Coal Chemistry; Chinese Academy of Sciences; Taiyuan 030001 P.R. China
- University of Chinese Academy of Sciences; Beijing 100049 P.R. China
| | - Wen-Feng Wang
- State Key Laboratory of Coal Conversion; Institute of Coal Chemistry; Chinese Academy of Sciences; Taiyuan 030001 P.R. China
- University of Chinese Academy of Sciences; Beijing 100049 P.R. China
| | - Ying-Ying Gu
- State Key Laboratory of Coal Conversion; Institute of Coal Chemistry; Chinese Academy of Sciences; Taiyuan 030001 P.R. China
- University of Chinese Academy of Sciences; Beijing 100049 P.R. China
| | - Zhen-Zhou Zhang
- State Key Laboratory of Coal Conversion; Institute of Coal Chemistry; Chinese Academy of Sciences; Taiyuan 030001 P.R. China
- University of Chinese Academy of Sciences; Beijing 100049 P.R. China
| | - Jun-Feng Zhang
- State Key Laboratory of Coal Conversion; Institute of Coal Chemistry; Chinese Academy of Sciences; Taiyuan 030001 P.R. China
| | - Qing-De Zhang
- State Key Laboratory of Coal Conversion; Institute of Coal Chemistry; Chinese Academy of Sciences; Taiyuan 030001 P.R. China
| | - Noritatsu Tsubaki
- State Key Laboratory of Coal Conversion; Institute of Coal Chemistry; Chinese Academy of Sciences; Taiyuan 030001 P.R. China
- Department of Applied Chemistry, School of Engineering; University of Toyama; Gofuku 3190 Toyama 930-8555 Japan
| | - Yi-Zhuo Han
- State Key Laboratory of Coal Conversion; Institute of Coal Chemistry; Chinese Academy of Sciences; Taiyuan 030001 P.R. China
| | - Yi-Sheng Tan
- State Key Laboratory of Coal Conversion; Institute of Coal Chemistry; Chinese Academy of Sciences; Taiyuan 030001 P.R. China
| |
Collapse
|
14
|
Zhang JJ, Ge JM, Wang HH, Wei X, Li XH, Chen JS. Activating Oxygen Molecules over Carbonyl-Modified Graphitic Carbon Nitride: Merging Supramolecular Oxidation with Photocatalysis in a Metal-Free Catalyst for Oxidative Coupling of Amines into Imines. ChemCatChem 2016. [DOI: 10.1002/cctc.201601065] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Jun-Jun Zhang
- School of Chemistry and Chemical Engineering; Shanghai Jiao Tong University; Shanghai 200240 P. R. China
| | - Jie-Min Ge
- School of Chemistry and Chemical Engineering; Shanghai Jiao Tong University; Shanghai 200240 P. R. China
| | - Hong-Hui Wang
- School of Chemistry and Chemical Engineering; Shanghai Jiao Tong University; Shanghai 200240 P. R. China
| | - Xiao Wei
- School of Chemistry and Chemical Engineering; Shanghai Jiao Tong University; Shanghai 200240 P. R. China
| | - Xin-Hao Li
- School of Chemistry and Chemical Engineering; Shanghai Jiao Tong University; Shanghai 200240 P. R. China
| | - Jie-Sheng Chen
- School of Chemistry and Chemical Engineering; Shanghai Jiao Tong University; Shanghai 200240 P. R. China
| |
Collapse
|
15
|
Diao J, Feng Z, Huang R, Liu H, Hamid SBA, Su DS. Selective and Stable Ethylbenzene Dehydrogenation to Styrene over Nanodiamonds under Oxygen-lean Conditions. CHEMSUSCHEM 2016; 9:662-666. [PMID: 26871428 DOI: 10.1002/cssc.201501516] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Indexed: 06/05/2023]
Abstract
For the first time, significant improvement of the catalytic performance of nanodiamonds was achieved for the dehydrogenation of ethylbenzene to styrene under oxygen-lean conditions. We demonstrated that the combination of direct dehydrogenation and oxidative dehydrogenation indeed occurred on the nanodiamond surface throughout the reaction system. It was found that the active sp(2)-sp(3) hybridized nanostructure was well maintained after the long-term test and the active ketonic carbonyl groups could be generated in situ. A high reactivity with 40% ethylbenzene conversion and 92% styrene selectivity was obtained over the nanodiamond catalyst under oxygen-lean conditions even after a 240 h test, demonstrating the potential of this procedure for application as a promising industrial process for the ethylbenzene dehydrogenation to styrene without steam protection.
Collapse
Affiliation(s)
- Jiangyong Diao
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Zhenbao Feng
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Rui Huang
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Hongyang Liu
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, China.
| | - Sharifah Bee Abd Hamid
- Nanotechnology & Catalysis Research Centre, NANOCAT, University of Malaya, IPS Building, 50603, Kuala Lumpur, Malaysia
| | - Dang Sheng Su
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, China.
| |
Collapse
|
16
|
Wirtanen T, Mäkelä MK, Sarfraz J, Ihalainen P, Hietala S, Melchionna M, Helaja J. Carbocatalysed Oxidative C sp 2C sp 2 Homocouplings of Benzo-Fused Heterocycles. Adv Synth Catal 2015. [DOI: 10.1002/adsc.201500664] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
17
|
Qi W, Liu W, Guo X, Schlögl R, Su D. Oxidative Dehydrogenation on Nanocarbon: Intrinsic Catalytic Activity and Structure-Function Relationships. Angew Chem Int Ed Engl 2015; 54:13682-5. [DOI: 10.1002/anie.201505818] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 08/16/2015] [Indexed: 11/05/2022]
|
18
|
Oxidative Dehydrogenation on Nanocarbon: Intrinsic Catalytic Activity and Structure-Function Relationships. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201505818] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
19
|
Liu L, Zhu YP, Su M, Yuan ZY. Metal-Free Carbonaceous Materials as Promising Heterogeneous Catalysts. ChemCatChem 2015. [DOI: 10.1002/cctc.201500350] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
20
|
Sun H, Zhao A, Gao N, Li K, Ren J, Qu X. Deciphering a Nanocarbon-Based Artificial Peroxidase: Chemical Identification of the Catalytically Active and Substrate-Binding Sites on Graphene Quantum Dots. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201500626] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
21
|
Sun H, Zhao A, Gao N, Li K, Ren J, Qu X. Deciphering a Nanocarbon-Based Artificial Peroxidase: Chemical Identification of the Catalytically Active and Substrate-Binding Sites on Graphene Quantum Dots. Angew Chem Int Ed Engl 2015; 54:7176-80. [DOI: 10.1002/anie.201500626] [Citation(s) in RCA: 289] [Impact Index Per Article: 32.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 03/09/2015] [Indexed: 11/09/2022]
|
22
|
Zhao Z, Dai Y, Ge G, Wang G. Explosive Decomposition of a Melamine-Cyanuric Acid Supramolecular Assembly for Fabricating Defect-Rich Nitrogen-Doped Carbon Nanotubes with Significantly Promoted Catalysis. Chemistry 2015; 21:8004-9. [DOI: 10.1002/chem.201500316] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2015] [Indexed: 11/10/2022]
|
23
|
Zhao Z, Dai Y, Ge G, Mao Q, Rong Z, Wang G. A Facile Approach to Fabricate an N-Doped Mesoporous Graphene/Nanodiamond Hybrid Nanocomposite with Synergistically Enhanced Catalysis. ChemCatChem 2015. [DOI: 10.1002/cctc.201500074] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
24
|
Zhao Z, Dai Y, Ge G, Wang G. Guanidine Nitrate Enhanced Catalysis of Nitrogen-Doped Carbon Nanotubes for Metal-Free Styrene Production through Direct Dehydrogenation. ChemCatChem 2015. [DOI: 10.1002/cctc.201402934] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
25
|
Wen G, Wu S, Li B, Dai C, Su DS. Active Sites and Mechanisms for Direct Oxidation of Benzene to Phenol over Carbon Catalysts. Angew Chem Int Ed Engl 2015; 54:4105-9. [DOI: 10.1002/anie.201410093] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 12/02/2014] [Indexed: 11/06/2022]
|
26
|
Wen G, Wu S, Li B, Dai C, Su DS. Aktive Zentren und Mechanismen der direkten Oxidation von Benzol zu Phenol an Kohlenstoffkatalysatoren. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201410093] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|