1
|
Li H, Guillaume SM, Carpentier J. Polythioesters Prepared by Ring-Opening Polymerization of Cyclic Thioesters and Related Monomers. Chem Asian J 2022; 17:e202200641. [PMID: 35816010 PMCID: PMC9543045 DOI: 10.1002/asia.202200641] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/07/2022] [Indexed: 11/11/2022]
Abstract
Polyhydroxyalkanoates (PHAs) are biodegradable and biocompatible polyesters with a wide range of applications; in particular, they currently stand as promising alternatives to conventional polyolefin-based "plastics". The introduction of sulfur atoms within the PHAs backbone can endow the resulting polythioesters (PTEs) with differentiated, sometimes enhanced thermal, optical and mechanical properties, thereby widening their versatility and use. Hence, PTEs have been gaining increasing attention over the past half-decade. This review highlights recent advances towards the synthesis of well-defined PTEs by ring-opening polymerization (ROP) of cyclic thioesters - namely thiolactones - as well as of S-carboxyanhydrides and thionolactones; it also covers the ring-opening copolymerization (ROCOP) of cyclic thioanhydrides or thiolactones with epoxides or episulfides. Most of the ROP reactions described are of anionic type, mediated by inorganic, organic or organometallic initiators/catalysts, along with a few enzymatic reactions as well. Emphasis is placed on the reactivity of the thio monomers, in relation to their ring-size ranging from 4- to 5-, 6- and 7-membered cycles, the nature of the catalyst/initiating systems implemented and their efficiency in terms of activity and control over the PTE molar mass, dispersity, topology, and microstructure.
Collapse
Affiliation(s)
- Hui Li
- Univ RennesCNRSISCR-UMR 622635000RennesFrance
| | | | | |
Collapse
|
2
|
Li H, Ollivier J, Guillaume SM, Carpentier JF. Tacticity Control of Cyclic Poly(3-Thiobutyrate) Prepared by Ring-Opening Polymerization of Racemic β-Thiobutyrolactone. Angew Chem Int Ed Engl 2022; 61:e202202386. [PMID: 35286752 DOI: 10.1002/anie.202202386] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Indexed: 12/19/2022]
Abstract
We report here on the ring-opening polymerization (ROP) of racemic β-thiobutyrolactone (rac-TBL), as the first chemical synthesis of poly(3-thiobutyrolactone) (P3TB), the thioester analogue of the ubiquitous poly(3-hydroxybutyrate) (P3HB). The ROP reactions proceed very fast (TOF >12 000 h-1 at r.t.) in the presence of various metal-based catalysts. Remarkably, catalyst systems based on non-chiral yttrium complexes stabilized by tetradentate amino alkoxy- or diamino-bis(phenolate) ligands {ONXOR1,R2 }2- (X=O, N) provide access to cyclic P3TB with either high isoselectivity (Pm up to 0.90) or high syndiotactic bias (Pr up to 0.70). The stereoselectivity can be controlled by manipulation of the substituents on the ligand platform and adequate choice of the reaction solvent and temperature as well. The cyclic polymer topology is evidenced by MALDI-ToF MS, NMR and TGA. Highly isotactic cyclic P3TB is a semi-crystalline material as revealed by DSC.
Collapse
Affiliation(s)
- Hui Li
- Univ Rennes, CNRS, ISCR-UMR 6226, 35000, Rennes, France
| | | | | | | |
Collapse
|
3
|
Li H, Ollivier J, Guillaume SM, Carpentier J. Tacticity Control of Cyclic Poly(3‐Thiobutyrate) Prepared by Ring‐Opening Polymerization of Racemic β‐Thiobutyrolactone. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202202386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Hui Li
- Univ Rennes, CNRS, ISCR-UMR 6226 35000 Rennes France
| | | | | | | |
Collapse
|
4
|
Wang Y, Li M, Wang S, Tao Y, Wang X. S
‐Carboxyanhydrides: Ultrafast and Selective Ring‐Opening Polymerizations Towards Well‐defined Functionalized Polythioesters. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202016228] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Yanchao Wang
- Key Laboratory of Polymer Ecomaterials Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 P. R. China
- University of Science and Technology of China Hefei 230026 P. R. China
| | - Maosheng Li
- Key Laboratory of Polymer Ecomaterials Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 P. R. China
| | - Shixue Wang
- Key Laboratory of Polymer Ecomaterials Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 P. R. China
| | - Youhua Tao
- Key Laboratory of Polymer Ecomaterials Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 P. R. China
- University of Science and Technology of China Hefei 230026 P. R. China
| | - Xianhong Wang
- Key Laboratory of Polymer Ecomaterials Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 P. R. China
| |
Collapse
|
5
|
Wang Y, Li M, Wang S, Tao Y, Wang X. S-Carboxyanhydrides: Ultrafast and Selective Ring-Opening Polymerizations Towards Well-defined Functionalized Polythioesters. Angew Chem Int Ed Engl 2021; 60:10798-10805. [PMID: 33605001 DOI: 10.1002/anie.202016228] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Indexed: 12/27/2022]
Abstract
Aliphatic polythioesters are popular polymers because of their appealing performance such as metal coordination ability, high refractive indices, and biodegradability. One of the most powerful approaches for generating these polymers is the ring-opening polymerization (ROP) of cyclic monomers. However, the synthesis of precisely controlled polythioesters via ROP of thiolactones still faces formidable challenges, including the minimal functional diversity of available thiolactone monomers, as well as inevitable transthioesterification side reactions. Here we introduce a hyperactive class of S-carboxyanhydride (SCA) monomers derived from amino acids that are significantly more reactive than thiolactones for ultrafast and selective ROP. Inclusion of the initiator PPNOBz ([PPN]=bis(triphenylphosphine)-iminium) with chain transfer agent benzoic acid, the polymerizations that can be operated in open vessels reach complete conversion within minutes (1-2 min) at room temperature, yielding polythioesters with predictable molecular weight, low dispersities, retained stereoregularity and chemical recyclability. Most fascinating are the functionalized SCAs that allow the incorporating of functional groups along the polythioester chain and thus finely tune their physicochemical performance. Computational studies were carried out to explore the origins of the distinctive rapidity and exquisite selectivity of the polymerizations, offering mechanistic insight and explaining why high polymerizability of SCA monomer is able to facilitate exquisitely selective ring-opening for enchainment over competing transthioesterification and backbiting reactions.
Collapse
Affiliation(s)
- Yanchao Wang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China.,University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Maosheng Li
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| | - Shixue Wang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| | - Youhua Tao
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China.,University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Xianhong Wang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| |
Collapse
|
6
|
Cui N, Han K, Zhou C, Seong M, Lu T, Jeong HE. A Tough Polysaccharide-Based Hydrogel with an On-Demand Dissolution Feature for Chronic Wound Care through Light-Induced Ultrafast Degradation. ACS APPLIED BIO MATERIALS 2020; 3:8338-8343. [PMID: 35019606 DOI: 10.1021/acsabm.0c00554] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Repeatedly changing dressings during wound healing can cause unbearable physical pain for patients with chronic skin injury. In this study, we designed a tough hydrogel-based dressing that can be degraded in an on-demand fashion for advanced chronic wound care. The resultant hydrogel dressing could be rapidly dissolved within 100 s after wetting with lithium phenyl(2,4,6-trimethylbenzonyl)phosphinate solution under low-power (1 W) ultraviolet (UV) irradiation (365 nm) owing to the breakage of disulfide bonds. This UV-triggered on-demand dissolution of tough hydrogels allows for a facile dressing replacement without causing tissue damage or pain, which is of great potential for clinical utilization.
Collapse
Affiliation(s)
- Ning Cui
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, People's Republic of China
| | - Kai Han
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, People's Republic of China
| | - Chuqing Zhou
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, People's Republic of China
| | - Minho Seong
- Department of Mechanical Engineering, Ulsan National Institute of Science and Technology, 50 UNIST-gil, Ulsan 44919, Republic of Korea
| | - Tingli Lu
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, People's Republic of China
| | - Hoon Eui Jeong
- Department of Mechanical Engineering, Ulsan National Institute of Science and Technology, 50 UNIST-gil, Ulsan 44919, Republic of Korea
| |
Collapse
|
7
|
Chakma P, Konkolewicz D. Dynamic Covalent Bonds in Polymeric Materials. Angew Chem Int Ed Engl 2019; 58:9682-9695. [PMID: 30624845 DOI: 10.1002/anie.201813525] [Citation(s) in RCA: 361] [Impact Index Per Article: 72.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Indexed: 12/20/2022]
Abstract
Dynamic covalent bonds (DCBs) have received significant attention over the past decade. These are covalent bonds that are capable of exchanging or switching between several molecules. Particular focus has recently been on utilizing these DCBs in polymeric materials. Introduction of DCBs into a polymer material provides it with powerful properties including self-healing, shape-memory properties, increased toughness, and ability to relax stresses as well as to change from one macromolecular architecture to another. This Minireview summarizes commonly used powerful DCBs formed by simple, often "click" reactions, and highlights the powerful materials that can result. Challenges and potential future developments are also discussed.
Collapse
Affiliation(s)
- Progyateg Chakma
- Department of Chemistry and Biochemistry, Miami University, 651 East High Street, Oxford, OH, 45056, USA
| | - Dominik Konkolewicz
- Department of Chemistry and Biochemistry, Miami University, 651 East High Street, Oxford, OH, 45056, USA
| |
Collapse
|
8
|
Affiliation(s)
- Progyateg Chakma
- Department of Chemistry and BiochemistryMiami University 651 East High Street Oxford OH 45056 USA
| | - Dominik Konkolewicz
- Department of Chemistry and BiochemistryMiami University 651 East High Street Oxford OH 45056 USA
| |
Collapse
|
9
|
Konieczynska MD, Villa-Camacho JC, Ghobril C, Perez-Viloria M, Tevis KM, Blessing WA, Nazarian A, Rodriguez EK, Grinstaff MW. On-Demand Dissolution of a Dendritic Hydrogel-based Dressing for Second-Degree Burn Wounds through Thiol-Thioester Exchange Reaction. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201604827] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Marlena D. Konieczynska
- Departments of Chemistry and Biomedical Engineering; Boston University; 590 Commonwealth Ave Boston MA 02215 USA
| | - Juan C. Villa-Camacho
- Center for Advanced Orthopaedic Studies; Beth Israel Deaconess Medical Center; 330 Brookline Ave Boston MA 02215 USA
| | - Cynthia Ghobril
- Departments of Chemistry and Biomedical Engineering; Boston University; 590 Commonwealth Ave Boston MA 02215 USA
| | - Miguel Perez-Viloria
- Center for Advanced Orthopaedic Studies; Beth Israel Deaconess Medical Center; 330 Brookline Ave Boston MA 02215 USA
| | - Kristie M. Tevis
- Departments of Chemistry and Biomedical Engineering; Boston University; 590 Commonwealth Ave Boston MA 02215 USA
| | - William A. Blessing
- Departments of Chemistry and Biomedical Engineering; Boston University; 590 Commonwealth Ave Boston MA 02215 USA
| | - Ara Nazarian
- Center for Advanced Orthopaedic Studies; Beth Israel Deaconess Medical Center; 330 Brookline Ave Boston MA 02215 USA
| | - Edward K. Rodriguez
- Center for Advanced Orthopaedic Studies; Beth Israel Deaconess Medical Center; 330 Brookline Ave Boston MA 02215 USA
| | - Mark W. Grinstaff
- Departments of Chemistry and Biomedical Engineering; Boston University; 590 Commonwealth Ave Boston MA 02215 USA
| |
Collapse
|
10
|
Konieczynska MD, Villa-Camacho JC, Ghobril C, Perez-Viloria M, Tevis KM, Blessing WA, Nazarian A, Rodriguez EK, Grinstaff MW. On-Demand Dissolution of a Dendritic Hydrogel-based Dressing for Second-Degree Burn Wounds through Thiol-Thioester Exchange Reaction. Angew Chem Int Ed Engl 2016; 55:9984-7. [PMID: 27410669 DOI: 10.1002/anie.201604827] [Citation(s) in RCA: 149] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 06/23/2016] [Indexed: 12/20/2022]
Abstract
An adhesive yet easily removable burn wound dressing represents a breakthrough in second-degree burn wound care. Current second-degree burn wound dressings absorb wound exudate, reduce bacterial infections, and maintain a moist environment for healing, but are surgically or mechanically debrided from the wound, causing additional trauma to the newly formed tissues. We have developed an on-demand dissolvable dendritic thioester hydrogel burn dressing for second-degree burn care. The hydrogel is composed of a lysine-based dendron and a PEG-based crosslinker, which are synthesized in high yields. The hydrogel burn dressing covers the wound and acts as a barrier to bacterial infection in an in vivo second-degree burn wound model. A unique feature of the hydrogel is its capability to be dissolved on-demand, via a thiol-thioester exchange reaction, allowing for a facile burn dressing removal.
Collapse
Affiliation(s)
- Marlena D Konieczynska
- Departments of Chemistry and Biomedical Engineering, Boston University, 590 Commonwealth Ave, Boston, MA, 02215, USA
| | - Juan C Villa-Camacho
- Center for Advanced Orthopaedic Studies, Beth Israel Deaconess Medical Center, 330 Brookline Ave, Boston, MA, 02215, USA
| | - Cynthia Ghobril
- Departments of Chemistry and Biomedical Engineering, Boston University, 590 Commonwealth Ave, Boston, MA, 02215, USA
| | - Miguel Perez-Viloria
- Center for Advanced Orthopaedic Studies, Beth Israel Deaconess Medical Center, 330 Brookline Ave, Boston, MA, 02215, USA
| | - Kristie M Tevis
- Departments of Chemistry and Biomedical Engineering, Boston University, 590 Commonwealth Ave, Boston, MA, 02215, USA
| | - William A Blessing
- Departments of Chemistry and Biomedical Engineering, Boston University, 590 Commonwealth Ave, Boston, MA, 02215, USA
| | - Ara Nazarian
- Center for Advanced Orthopaedic Studies, Beth Israel Deaconess Medical Center, 330 Brookline Ave, Boston, MA, 02215, USA
| | - Edward K Rodriguez
- Center for Advanced Orthopaedic Studies, Beth Israel Deaconess Medical Center, 330 Brookline Ave, Boston, MA, 02215, USA
| | - Mark W Grinstaff
- Departments of Chemistry and Biomedical Engineering, Boston University, 590 Commonwealth Ave, Boston, MA, 02215, USA.
| |
Collapse
|
11
|
Brachvogel RC, von Delius M. The Dynamic Covalent Chemistry of Esters, Acetals and Orthoesters. European J Org Chem 2016. [DOI: 10.1002/ejoc.201600388] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- René-Chris Brachvogel
- Institute of Organic Chemistry and Advanced Materials; University of Ulm; Albert-Einstein-Allee 11 89081 Ulm Germany
- Friedrich-Alexander University Erlangen-Nürnberg (FAU); Department of Chemistry and Pharmacy & Interdisciplinary Center of Molecular Materials (ICMM); Henkestr. 42 91054 Erlangen Germany
| | - Max von Delius
- Institute of Organic Chemistry and Advanced Materials; University of Ulm; Albert-Einstein-Allee 11 89081 Ulm Germany
| |
Collapse
|
12
|
Self-Assembly of Amphiphilic Janus Dendrimers into Mechanically Robust Supramolecular Hydrogels for Sustained Drug Release. Chemistry 2015; 21:14433-9. [DOI: 10.1002/chem.201501812] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Indexed: 12/30/2022]
|