1
|
Ito Y, Kajihara Y, Takeda Y. Chemical‐Synthesis‐Based Approach to Glycoprotein Functions in the Endoplasmic Reticulum. Chemistry 2020; 26:15461-15470. [DOI: 10.1002/chem.202004158] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Indexed: 12/18/2022]
Affiliation(s)
- Yukishige Ito
- Project Research Center for Fundamental Sciences Graduate School of Science Osaka University Toyonaka Osaka 5600043 Japan
- RIKEN Cluster for Pioneering Research Wako Saitama 3510198 Japan
| | - Yasuhiro Kajihara
- Project Research Center for Fundamental Sciences Graduate School of Science Osaka University Toyonaka Osaka 5600043 Japan
- Department of Chemistry Graduate School of Science Osaka University Toyonaka Osaka 5600043 Japan
| | - Yoichi Takeda
- Department of Biotechnology Ritsumeikan University Kusatsu Shiga 5258577 Japan
| |
Collapse
|
2
|
Priyanka P, Parsons TB, Miller A, Platt FM, Fairbanks AJ. Chemoenzymatic Synthesis of a Phosphorylated Glycoprotein. Angew Chem Int Ed Engl 2016; 55:5058-61. [DOI: 10.1002/anie.201600817] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2016] [Indexed: 01/02/2023]
Affiliation(s)
- Pragya Priyanka
- Department of Chemistry; University of Canterbury; Private Bag 4800 Christchurch 8140 New Zealand
| | - Thomas B. Parsons
- Department of Chemistry; Chemistry Research Laboratory; University of Oxford; Mansfield Road Oxford OX1 3TA UK
| | - Antonia Miller
- Callaghan Innovation; School of Biological Sciences; University of Canterbury; Private Bag 4800 Christchurch 8140 New Zealand
| | - Frances M. Platt
- Department of Pharmacology; University of Oxford; Mansfield Road Oxford OX1 3QT UK
| | - Antony J. Fairbanks
- Department of Chemistry; University of Canterbury; Private Bag 4800 Christchurch 8140 New Zealand
| |
Collapse
|
3
|
Priyanka P, Parsons TB, Miller A, Platt FM, Fairbanks AJ. Chemoenzymatic Synthesis of a Phosphorylated Glycoprotein. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201600817] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Pragya Priyanka
- Department of Chemistry; University of Canterbury; Private Bag 4800 Christchurch 8140 New Zealand
| | - Thomas B. Parsons
- Department of Chemistry; Chemistry Research Laboratory; University of Oxford; Mansfield Road Oxford OX1 3TA UK
| | - Antonia Miller
- Callaghan Innovation; School of Biological Sciences; University of Canterbury; Private Bag 4800 Christchurch 8140 New Zealand
| | - Frances M. Platt
- Department of Pharmacology; University of Oxford; Mansfield Road Oxford OX1 3QT UK
| | - Antony J. Fairbanks
- Department of Chemistry; University of Canterbury; Private Bag 4800 Christchurch 8140 New Zealand
| |
Collapse
|
4
|
Izumi M, Oka Y, Okamoto R, Seko A, Takeda Y, Ito Y, Kajihara Y. Synthesis of Glc1
Man9
-Glycoprotein Probes by a Misfolding/Enzymatic Glucosylation/Misfolding Sequence. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201511491] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Masayuki Izumi
- Department of Chemistry; Graduate School of Science; Osaka University; 1-1 Machikaneyama, Toyonaka Osaka 560-0043 Japan
| | - Yukiho Oka
- Department of Chemistry; Graduate School of Science; Osaka University; 1-1 Machikaneyama, Toyonaka Osaka 560-0043 Japan
| | - Ryo Okamoto
- Department of Chemistry; Graduate School of Science; Osaka University; 1-1 Machikaneyama, Toyonaka Osaka 560-0043 Japan
| | - Akira Seko
- ERATO Ito glycotrilogy project Japan Science and Technology Agency (JST); 2-1 Hirosawa, Wako Saitama 351-0198 Japan
| | - Yoichi Takeda
- ERATO Ito glycotrilogy project Japan Science and Technology Agency (JST); 2-1 Hirosawa, Wako Saitama 351-0198 Japan
| | - Yukishige Ito
- ERATO Ito glycotrilogy project Japan Science and Technology Agency (JST); 2-1 Hirosawa, Wako Saitama 351-0198 Japan
- Synthetic Cellular Chemistry Laboratory; RIKEN; 2-1 Hirosawa, Wako Saitama 351-0198 Japan
| | - Yasuhiro Kajihara
- Department of Chemistry; Graduate School of Science; Osaka University; 1-1 Machikaneyama, Toyonaka Osaka 560-0043 Japan
- ERATO Ito glycotrilogy project Japan Science and Technology Agency (JST); 2-1 Hirosawa, Wako Saitama 351-0198 Japan
| |
Collapse
|
5
|
Izumi M, Oka Y, Okamoto R, Seko A, Takeda Y, Ito Y, Kajihara Y. Synthesis of Glc1Man9-Glycoprotein Probes by a Misfolding/Enzymatic Glucosylation/Misfolding Sequence. Angew Chem Int Ed Engl 2016; 55:3968-71. [PMID: 26890995 DOI: 10.1002/anie.201511491] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Indexed: 12/12/2022]
Abstract
Glycoproteins in non-native conformations are often toxic to cells and may cause diseases, thus the quality control (QC) system eliminates these unwanted species. Lectin chaperone calreticulin and glucosidase II, both of which recognize the Glc1 Man9 oligosaccharide on glycoproteins, are important components of the glycoprotein QC system. Reported herein is the preparation of Glc1 Man9 -glycoproteins in both native and non-native conformations by using the following sequence: misfolding of chemically synthesized Man9 -glycoprotein, enzymatic glucosylation, and another misfolding step. By using synthetic glycoprotein probes, calreticulin was found to bind preferentially to a hydrophobic non-native glycoprotein whereas glucosidase II activity was not affected by glycoprotein conformation. The results demonstrate the ability of chemical synthesis to deliver homogeneous glycoproteins in several non-native conformations for probing the glycoprotein QC system.
Collapse
Affiliation(s)
- Masayuki Izumi
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
| | - Yukiho Oka
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
| | - Ryo Okamoto
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
| | - Akira Seko
- ERATO Ito glycotrilogy project Japan Science and Technology Agency (JST), 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Yoichi Takeda
- ERATO Ito glycotrilogy project Japan Science and Technology Agency (JST), 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Yukishige Ito
- ERATO Ito glycotrilogy project Japan Science and Technology Agency (JST), 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan. .,Synthetic Cellular Chemistry Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.
| | - Yasuhiro Kajihara
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan. .,ERATO Ito glycotrilogy project Japan Science and Technology Agency (JST), 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.
| |
Collapse
|
6
|
Hachisu M, Seko A, Daikoku S, Takeda Y, Sakono M, Ito Y. Hydrophobic Tagged Dihydrofolate Reductase for Creating Misfolded Glycoprotein Mimetics. Chembiochem 2016; 17:300-3. [PMID: 26670196 DOI: 10.1002/cbic.201500595] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2015] [Indexed: 12/18/2022]
Abstract
In the endoplasmic reticulum (ER), nascent glycoproteins that have not acquired the native conformation are either repaired or sorted for degradation by specific quality-control systems composed by various proteins. Among them, UDP-glucose:glycoprotein glucosyltransferase (UGGT) serves as a folding sensor in the ER. However, the molecular mechanism of its recognition remains obscure. This study used pseudo-misfolded glycoproteins, comprising a modified dihydrofolate reductase with artificial pyrene-cysteine moiety on the protein surface (pDHFR) and Man9 GlcNAc2 -methotrexate (M9-MTX). All five M9-MTX/pDHFR complexes, with a pyrene group at different positions, were found to be good substrates of UGGT, irrespective of the site of pyrene modification. These results suggest UGGT's mode of substrate recognition is fuzzy, thus allowing various glycoproteins to be accommodated in the folding cycle.
Collapse
Affiliation(s)
- Masakazu Hachisu
- ERATO Ito Glycotrilogy Project, Japan Science and Technology Agency (JST), 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.,Department of Biological Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo, 125-8585, Japan
| | - Akira Seko
- ERATO Ito Glycotrilogy Project, Japan Science and Technology Agency (JST), 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Shusaku Daikoku
- ERATO Ito Glycotrilogy Project, Japan Science and Technology Agency (JST), 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Yoichi Takeda
- ERATO Ito Glycotrilogy Project, Japan Science and Technology Agency (JST), 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan. .,Department of Biotechnology, Ritsumeikan University, 1-1-1 Noji-higashi, Kusatsu, Shiga, 525-8577, Japan.
| | - Masafumi Sakono
- ERATO Ito Glycotrilogy Project, Japan Science and Technology Agency (JST), 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.,Department of Applied Chemistry, University of Toyama, 3190 Gofuku, Toyama, Toyama, 930-855, Japan
| | - Yukishige Ito
- ERATO Ito Glycotrilogy Project, Japan Science and Technology Agency (JST), 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan. .,Synthetic Cellular Chemistry Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.
| |
Collapse
|
7
|
Pan M, Li S, Li X, Shao F, Liu L, Hu HG. Synthesis of and Specific Antibody Generation for Glycopeptides with ArginineN-GlcNAcylation. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201407824] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
8
|
Pan M, Li S, Li X, Shao F, Liu L, Hu HG. Synthesis of and Specific Antibody Generation for Glycopeptides with ArginineN-GlcNAcylation. Angew Chem Int Ed Engl 2014; 53:14517-21. [DOI: 10.1002/anie.201407824] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 09/13/2014] [Indexed: 12/23/2022]
|