1
|
Zhang M, Chen HW, Liu QQ, Gao FT, Li YX, Hu XG, Yu CY. De Novo Synthesis of Orthogonally-Protected C2-Fluoro Digitoxoses and Cymaroses: Development and Application for the Synthesis of Fluorinated Digoxin. J Org Chem 2021; 87:1272-1284. [PMID: 34964642 DOI: 10.1021/acs.joc.1c02592] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Inspired by Roush's pioneering work on rare sugars, we have developed a scalable, stereoselective, de novo synthesis of orthogonally protected C2-fluoro digitoxose and cymarose, utilizing Sharpless kinetic resolution and organocatalytic fluorination as key steps. The utility of this strategy is demonstrated by the synthesis of a fluorinated analogue of digoxin, which indicates the fluorine on the sugar ring may have a significant impact on biological activity.
Collapse
Affiliation(s)
- Ming Zhang
- National Engineering Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang 330022, China.,Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Hong-Wei Chen
- National Engineering Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang 330022, China
| | - Qing-Quan Liu
- National Engineering Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang 330022, China
| | - Feng-Teng Gao
- National Engineering Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang 330022, China
| | - Yi-Xian Li
- Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Xiang-Guo Hu
- National Engineering Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang 330022, China
| | - Chu-Yi Yu
- Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
2
|
Kurfiřt M, Dračínský M, Červenková Šťastná L, Cuřínová P, Hamala V, Hovorková M, Bojarová P, Karban J. Selectively Deoxyfluorinated N-Acetyllactosamine Analogues as 19 F NMR Probes to Study Carbohydrate-Galectin Interactions. Chemistry 2021; 27:13040-13051. [PMID: 34216419 DOI: 10.1002/chem.202101752] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Indexed: 01/12/2023]
Abstract
Galectins are widely expressed galactose-binding lectins implied, for example, in immune regulation, metastatic spreading, and pathogen recognition. N-Acetyllactosamine (Galβ1-4GlcNAc, LacNAc) and its oligomeric or glycosylated forms are natural ligands of galectins. To probe substrate specificity and binding mode of galectins, we synthesized a complete series of six mono-deoxyfluorinated analogues of LacNAc, in which each hydroxyl has been selectively replaced by fluorine while the anomeric position has been protected as methyl β-glycoside. Initial evaluation of their binding to human galectin-1 and -3 by ELISA and 19 F NMR T2 -filter revealed that deoxyfluorination at C3, C4' and C6' completely abolished binding to galectin-1 but very weak binding to galectin-3 was still detectable. Moreover, deoxyfluorination of C2' caused an approximately 8-fold increase in the binding affinity towards galectin-1, whereas binding to galectin-3 was essentially not affected. Lipophilicity measurement revealed that deoxyfluorination at the Gal moiety affects log P very differently compared to deoxyfluorination at the GlcNAc moiety.
Collapse
Affiliation(s)
- Martin Kurfiřt
- Department of Bioorganic Compounds and Nanocomposites, Institute of Chemical Process Fundamentals of the Czech Academy of Sciences, Rozvojová 135, 16502, Prague 6, Czech Republic.,University of Chemistry and Technology Prague, Technická 5, 16628, Prague 6, Czech Republic
| | - Martin Dračínský
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 542/2, 160 00, Prague 6, Czech Republic
| | - Lucie Červenková Šťastná
- Department of Bioorganic Compounds and Nanocomposites, Institute of Chemical Process Fundamentals of the Czech Academy of Sciences, Rozvojová 135, 16502, Prague 6, Czech Republic
| | - Petra Cuřínová
- Department of Bioorganic Compounds and Nanocomposites, Institute of Chemical Process Fundamentals of the Czech Academy of Sciences, Rozvojová 135, 16502, Prague 6, Czech Republic
| | - Vojtěch Hamala
- Department of Bioorganic Compounds and Nanocomposites, Institute of Chemical Process Fundamentals of the Czech Academy of Sciences, Rozvojová 135, 16502, Prague 6, Czech Republic.,University of Chemistry and Technology Prague, Technická 5, 16628, Prague 6, Czech Republic
| | - Michaela Hovorková
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20, Prague, Czech Republic
| | - Pavla Bojarová
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20, Prague, Czech Republic
| | - Jindřich Karban
- Department of Bioorganic Compounds and Nanocomposites, Institute of Chemical Process Fundamentals of the Czech Academy of Sciences, Rozvojová 135, 16502, Prague 6, Czech Republic
| |
Collapse
|
3
|
Guo T, Dätwyler P, Demina E, Richards MR, Ge P, Zou C, Zheng R, Fougerat A, Pshezhetsky AV, Ernst B, Cairo CW. Selective Inhibitors of Human Neuraminidase 3. J Med Chem 2018; 61:1990-2008. [PMID: 29425031 DOI: 10.1021/acs.jmedchem.7b01574] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Human neuraminidases (NEU) are associated with human diseases including cancer, atherosclerosis, and diabetes. To obtain small molecule inhibitors as research tools for the study of their biological functions, we designed a library of 2-deoxy-2,3-didehydro- N-acetylneuraminic acid (DANA) analogues with modifications at C4 and C9 positions. This library allowed us to discover selective inhibitors targeting the human NEU3 isoenzyme. Our most selective inhibitor for NEU3 has a Ki of 320 ± 40 nM and a 15-fold selectivity over other human neuraminidase isoenzymes. This inhibitor blocks glycolipid processing by NEU3 in vitro. To improve their pharmacokinetic properties, various esters of the best inhibitors were synthesized and evaluated. Finally, we confirmed that our best compounds exhibited selective inhibition of NEU orthologues from murine brain.
Collapse
Affiliation(s)
- Tianlin Guo
- Alberta Glycomics Centre and Department of Chemistry , University of Alberta , Edmonton Alberta T6G 2G2 , Canada
| | - Philipp Dätwyler
- Department of Pharmaceutical Sciences, Pharmacenter , University of Basel , Klingelbergstrasse 50 , CH-4056 Basel , Switzerland
| | - Ekaterina Demina
- Division of Medical Genetics, Sainte-Justine University Hospital Research Center , University of Montreal , Montréal , Quebec H3T 1C5 , Canada
| | - Michele R Richards
- Alberta Glycomics Centre and Department of Chemistry , University of Alberta , Edmonton Alberta T6G 2G2 , Canada
| | - Peng Ge
- Alberta Glycomics Centre and Department of Chemistry , University of Alberta , Edmonton Alberta T6G 2G2 , Canada
| | - Chunxia Zou
- Alberta Glycomics Centre and Department of Chemistry , University of Alberta , Edmonton Alberta T6G 2G2 , Canada
| | - Ruixiang Zheng
- Alberta Glycomics Centre and Department of Chemistry , University of Alberta , Edmonton Alberta T6G 2G2 , Canada
| | - Anne Fougerat
- Division of Medical Genetics, Sainte-Justine University Hospital Research Center , University of Montreal , Montréal , Quebec H3T 1C5 , Canada
| | - Alexey V Pshezhetsky
- Division of Medical Genetics, Sainte-Justine University Hospital Research Center , University of Montreal , Montréal , Quebec H3T 1C5 , Canada
| | - Beat Ernst
- Department of Pharmaceutical Sciences, Pharmacenter , University of Basel , Klingelbergstrasse 50 , CH-4056 Basel , Switzerland
| | - Christopher W Cairo
- Alberta Glycomics Centre and Department of Chemistry , University of Alberta , Edmonton Alberta T6G 2G2 , Canada
| |
Collapse
|
4
|
Gao Z, Niikura M, Withers SG. Ultrasensitive Fluorogenic Reagents for Neuraminidase Titration. Angew Chem Int Ed Engl 2017; 56:6112-6116. [PMID: 28191709 DOI: 10.1002/anie.201610544] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Indexed: 11/07/2022]
Abstract
Influenza viral neuraminidase plays a crucial role during infections. It is a major target for the development of anti-influenza drugs and is also attracting increasing attention as a vaccine target as evidence accumulates that neuraminidase-neutralizing antibodies contribute to protection. However, no method currently exists to accurately and efficiently measure concentrations of active neuraminidase in virus samples or other crude mixtures, which hampers development on both fronts. In this report, we describe the development of a selective and sensitive active-site titration reagent for neuraminidase that can quantify viral neuraminidases down to sub-nanomolar levels in crude samples, with no background from non-viral neuraminidases. By using this reagent, we determined accurate kcat values for six influenza A and two influenza B neuraminidases for the first time. We also quantified the neuraminidase content in a commercial influenza vaccine, thus demonstrating that this titration reagent opens the possibility for better vaccine analysis.
Collapse
Affiliation(s)
- Zhizeng Gao
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia, V6T 1Z1, Canada
| | - Masahiro Niikura
- Faculty of Health Sciences, Simon Fraser University, Burnaby, British Columbia, V5A 1S6, Canada
| | - Stephen G Withers
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia, V6T 1Z1, Canada
| |
Collapse
|
5
|
Gao Z, Niikura M, Withers SG. Ultrasensitive Fluorogenic Reagents for Neuraminidase Titration. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201610544] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Zhizeng Gao
- Department of Chemistry; University of British Columbia; Vancouver British Columbia V6T 1Z1 Canada
| | - Masahiro Niikura
- Faculty of Health Sciences; Simon Fraser University; Burnaby British Columbia V5A 1S6 Canada
| | - Stephen G. Withers
- Department of Chemistry; University of British Columbia; Vancouver British Columbia V6T 1Z1 Canada
| |
Collapse
|
6
|
Dirr L, El-Deeb IM, Guillon P, Carroux CJ, Chavas LMG, von Itzstein M. The Catalytic Mechanism of Human Parainfluenza Virus Type 3 Haemagglutinin-Neuraminidase Revealed. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201412243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
7
|
Dirr L, El-Deeb IM, Guillon P, Carroux CJ, Chavas LMG, von Itzstein M. The Catalytic Mechanism of Human Parainfluenza Virus Type 3 Haemagglutinin-Neuraminidase Revealed. Angew Chem Int Ed Engl 2015; 54:2936-40. [DOI: 10.1002/anie.201412243] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Indexed: 11/07/2022]
|
8
|
Weck S, Robinson K, Smith MR, Withers SG. Understanding viral neuraminidase inhibition by substituted difluorosialic acids. Chem Commun (Camb) 2015; 51:2933-5. [DOI: 10.1039/c4cc08256g] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Slow turnover of the inactivated neuraminidase formed upon reaction with DFSA inhibitors containing a guanidine is shown not to be a consequence of inherent inductive effects but tight binding.
Collapse
Affiliation(s)
- S. Weck
- Departments of Chemistry and Biochemistry
- University of British Columbia
- Vancouver
- Canada
| | - K. Robinson
- Departments of Chemistry and Biochemistry
- University of British Columbia
- Vancouver
- Canada
| | - M. R. Smith
- Centre for Drug Research and Development (CDRD)
- Vancouver
- Canada
| | - S. G. Withers
- Departments of Chemistry and Biochemistry
- University of British Columbia
- Vancouver
- Canada
| |
Collapse
|
9
|
Abstract
A review of known small molecule inhibitors and substrates of the human neuraminidase enzymes.
Collapse
Affiliation(s)
- Christopher W. Cairo
- Alberta Glycomics Centre
- Department of Chemistry
- University of Alberta
- Edmonton Alberta
- Canada
| |
Collapse
|