1
|
Mao S, Chang Z, Ying Zheng Y, Shekhtman A, Sheng J. DNA Functionality with Photoswitchable Hydrazone Cytidine*. Chemistry 2021; 27:8372-8379. [PMID: 33872432 DOI: 10.1002/chem.202100742] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Indexed: 12/18/2022]
Abstract
A new family of hydrazone modified cytidine phosphoramidite building block was synthesized and incorporated into oligodeoxynucleotides to construct photoswitchable DNA strands. The E-Z isomerization triggered by the irradiation of blue light with a wavelength of 450 nm was investigated and confirmed by 1 H NMR spectroscopy and HPLC in the contexts of both nucleoside and oligodeoxynucleotide. The light activated Z form isomer of this hydrazone-cytidine with a six-member intramolecular hydrogen bond was found to inhibit DNA synthesis in the primer extension model by using Bst DNA polymerase. In addition, the hydrazone modification caused the misincorporation of dATP together with dGTP into the growing DNA strand with similar selectivity, highlighting a potential G to A mutation. This work provides a novel functional DNA building block and an additional molecular tool that has potential chemical biology and biomedicinal applications to control DNA synthesis and DNA-enzyme interactions using the cell friendly blue light irradiation.
Collapse
Affiliation(s)
- Song Mao
- Department of Chemistry, University at Albany, State University of New York, 1400 Washington Ave., Albany, NY, 1222, USA.,The RNA Institute, University at Albany State University of New York, 1400 Washington Ave., Albany, NY, 1222, USA
| | - Zhihua Chang
- Department of Chemistry, University at Albany, State University of New York, 1400 Washington Ave., Albany, NY, 1222, USA.,The RNA Institute, University at Albany State University of New York, 1400 Washington Ave., Albany, NY, 1222, USA
| | - Ya Ying Zheng
- Department of Chemistry, University at Albany, State University of New York, 1400 Washington Ave., Albany, NY, 1222, USA.,The RNA Institute, University at Albany State University of New York, 1400 Washington Ave., Albany, NY, 1222, USA
| | - Alexander Shekhtman
- Department of Chemistry, University at Albany, State University of New York, 1400 Washington Ave., Albany, NY, 1222, USA
| | - Jia Sheng
- Department of Chemistry, University at Albany, State University of New York, 1400 Washington Ave., Albany, NY, 1222, USA.,The RNA Institute, University at Albany State University of New York, 1400 Washington Ave., Albany, NY, 1222, USA
| |
Collapse
|
2
|
Fan H, Sun H, Zhang Q, Peng X. Photoinduced DNA Interstrand Cross-Linking by 1,1'-Biphenyl Analogues: Substituents and Leaving Groups Combine to Determine the Efficiency of Cross-Linker. Chemistry 2021; 27:5215-5224. [PMID: 33440025 DOI: 10.1002/chem.202005064] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 01/05/2021] [Indexed: 11/11/2022]
Abstract
Two series of 1,1'-biphenyl analogues with various leaving groups (L=OAc, OCH3 , OCHCH=CH2 , OCH2 Ph, SPh, SePh, and Ph3 P+ ) were synthesized. Their reactivity towards DNA and the reaction mechanism were investigated by determining DNA interstrand cross-link (ICL) efficiency, radical and carbocation formation, and the cross-linking reaction sites. All compounds induced DNA ICL formation upon 350 nm irradiation via a carbocation that was generated from oxidation of the corresponding free radicals. The ICL efficiency and the reaction rate strongly depended on the combined effect of the leaving group and the substituent. Among all compounds tested, the high ICL efficiency (30-43 %) and fast reaction rate were observed with compounds carrying a nitrophenyl group and acetate (2 a), ether (2 b and 2 c), or triphenylphosphonium salt (2 g) as leaving groups. Most compounds with a 4-methoxybenzene group showed similar DNA ICL efficiency (≈30 %) with a slow DNA cross-linking reaction rate. Both cation trapping and free radical trapping adducts were detected in the photo activation process of these compounds, which provided direct evidence for the proposed mechanism. Heat stability study in combination with sequence study suggested that these photo-generated benzyl cations alkylate DNA at dG, dA, and dC sites.
Collapse
Affiliation(s)
- Heli Fan
- Department of Chemistry and Biochemistry and the Milwaukee Institute for Drug Discovery, University of Wisconsin-Milwaukee, 3210 N. Cramer Street, Milwaukee, Wisconsin, 53211, USA.,School of Pharmacy, Tianjin Medical University, 300070, Tianjin, P. R. China
| | - Huabing Sun
- Department of Chemistry and Biochemistry and the Milwaukee Institute for Drug Discovery, University of Wisconsin-Milwaukee, 3210 N. Cramer Street, Milwaukee, Wisconsin, 53211, USA.,School of Pharmacy, Tianjin Medical University, 300070, Tianjin, P. R. China
| | - Qi Zhang
- Department of Chemistry and Biochemistry and the Milwaukee Institute for Drug Discovery, University of Wisconsin-Milwaukee, 3210 N. Cramer Street, Milwaukee, Wisconsin, 53211, USA
| | - Xiaohua Peng
- Department of Chemistry and Biochemistry and the Milwaukee Institute for Drug Discovery, University of Wisconsin-Milwaukee, 3210 N. Cramer Street, Milwaukee, Wisconsin, 53211, USA
| |
Collapse
|
3
|
Johnson A, Karimi A, Luedtke NW. Enzymatic Incorporation of a Coumarin–Guanine Base Pair. Angew Chem Int Ed Engl 2019; 58:16839-16843. [DOI: 10.1002/anie.201910059] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Indexed: 12/16/2022]
Affiliation(s)
- Aaron Johnson
- Department of ChemistryUniversity of Zurich Winterthurerstrasse 190 8057 Zurich Switzerland
| | - Ashkan Karimi
- Department of ChemistryUniversity of Zurich Winterthurerstrasse 190 8057 Zurich Switzerland
| | - Nathan W. Luedtke
- Department of ChemistryUniversity of Zurich Winterthurerstrasse 190 8057 Zurich Switzerland
| |
Collapse
|
4
|
Johnson A, Karimi A, Luedtke NW. Enzymatic Incorporation of a Coumarin–Guanine Base Pair. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201910059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Aaron Johnson
- Department of ChemistryUniversity of Zurich Winterthurerstrasse 190 8057 Zurich Switzerland
| | - Ashkan Karimi
- Department of ChemistryUniversity of Zurich Winterthurerstrasse 190 8057 Zurich Switzerland
| | - Nathan W. Luedtke
- Department of ChemistryUniversity of Zurich Winterthurerstrasse 190 8057 Zurich Switzerland
| |
Collapse
|
5
|
Tera M, Harati Taji Z, Luedtke NW. Intercalation‐enhanced “Click” Crosslinking of DNA. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201808054] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Masayuki Tera
- Department of ChemistryUniversity of Zurich Winterthurerstrasse 190 8057 Zurich Switzerland
- Bioorganic Research InstituteSuntory Foundation for Life Sciences (SUNBOR) 8-1-1 Seikadai, Seika, Soraku Kyoto 619-0284 Japan
| | - Zahra Harati Taji
- Department of ChemistryUniversity of Zurich Winterthurerstrasse 190 8057 Zurich Switzerland
| | - Nathan W. Luedtke
- Department of ChemistryUniversity of Zurich Winterthurerstrasse 190 8057 Zurich Switzerland
| |
Collapse
|
6
|
Tera M, Harati Taji Z, Luedtke NW. Intercalation-enhanced "Click" Crosslinking of DNA. Angew Chem Int Ed Engl 2018; 57:15405-15409. [PMID: 30240107 DOI: 10.1002/anie.201808054] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Revised: 08/22/2018] [Indexed: 01/05/2023]
Abstract
DNA-DNA cross-linking agents constitute an important family of chemotherapeutics that non-specifically react with endogenous nucleophiles and therefore exhibit undesirable side effects. Here we report a cationic Sondheimer diyne derivative "DiMOC" that exhibits weak, reversible intercalation into duplex DNA (Kd =15 μm) where it undergoes tandem strain-promoted cross-linking of azide-containing DNA to give DNA-DNA interstrand crosslinks (ICLs) with an exceptionally high apparent rate constant kapp =2.1×105 m-1 s-1 . This represents a 21 000-fold rate enhancement as compared the reaction between DIMOC and 5-(azidomethyl)-2'-deoxyuridine (AmdU) nucleoside. As single agents, 5'-bispivaloyloxymethyl (POM)-AmdU and DiMOC exhibited low cytotoxicity, but highly toxic DNA-DNA ICLs were generated by metabolic incorporation of AmdU groups into cellular DNA, followed by treatment of the cells with DiMOC. These results provide the first examples of intercalation-enhanced bioorthogonal chemical reactions on DNA, and furthermore, the first strain-promoted double click (SPDC) reactions inside of living cells.
Collapse
Affiliation(s)
- Masayuki Tera
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.,Bioorganic Research Institute, Suntory Foundation for Life Sciences (SUNBOR), 8-1-1 Seikadai, Seika, Soraku, Kyoto, 619-0284, Japan
| | - Zahra Harati Taji
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Nathan W Luedtke
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| |
Collapse
|
7
|
Fan H, Sun H, Peng X. Substituents Have a Large Effect on Photochemical Generation of Benzyl Cations and DNA Cross-Linking. Chemistry 2018; 24:7671-7682. [DOI: 10.1002/chem.201705929] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Indexed: 11/08/2022]
Affiliation(s)
- Heli Fan
- Department of Chemistry and Biochemistry; University of Wisconsin-Milwaukee; 3210 N. Cramer Street Milwaukee Wisconsin 53211 USA
| | - Huabing Sun
- Department of Chemistry and Biochemistry; University of Wisconsin-Milwaukee; 3210 N. Cramer Street Milwaukee Wisconsin 53211 USA
| | - Xiaohua Peng
- Department of Chemistry and Biochemistry; University of Wisconsin-Milwaukee; 3210 N. Cramer Street Milwaukee Wisconsin 53211 USA
- Milwaukee Institute for Drug Discovery; University of Wisconsin-Milwaukee; 3210 N. Cramer Street Milwaukee Wisconsin 53211 USA
| |
Collapse
|
8
|
Frisch H, Marschner DE, Goldmann AS, Barner‐Kowollik C. Wellenlängengesteuerte dynamische kovalente Chemie. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201709991] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Hendrik Frisch
- School of Chemistry, Physics and Mechanical Engineering Queensland University of Technology (QUT) 2 George Street QLD 4000 Brisbane Australien
| | - David E. Marschner
- School of Chemistry, Physics and Mechanical Engineering Queensland University of Technology (QUT) 2 George Street QLD 4000 Brisbane Australien
- Macromolecular Architectures Institut für Technische Chemie und Polymerchemie Karlsruher Institute of Technology (KIT) Engesserstraße 18 76131 Karlsruhe Deutschland
| | - Anja S. Goldmann
- School of Chemistry, Physics and Mechanical Engineering Queensland University of Technology (QUT) 2 George Street QLD 4000 Brisbane Australien
- Macromolecular Architectures Institut für Technische Chemie und Polymerchemie Karlsruher Institute of Technology (KIT) Engesserstraße 18 76131 Karlsruhe Deutschland
| | - Christopher Barner‐Kowollik
- School of Chemistry, Physics and Mechanical Engineering Queensland University of Technology (QUT) 2 George Street QLD 4000 Brisbane Australien
- Macromolecular Architectures Institut für Technische Chemie und Polymerchemie Karlsruher Institute of Technology (KIT) Engesserstraße 18 76131 Karlsruhe Deutschland
| |
Collapse
|
9
|
Frisch H, Marschner DE, Goldmann AS, Barner‐Kowollik C. Wavelength‐Gated Dynamic Covalent Chemistry. Angew Chem Int Ed Engl 2018; 57:2036-2045. [DOI: 10.1002/anie.201709991] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Indexed: 12/16/2022]
Affiliation(s)
- Hendrik Frisch
- School of Chemistry, Physics and Mechanical Engineering Queensland University of Technology (QUT) 2 George Street QLD 4000 Brisbane Australia
| | - David E. Marschner
- School of Chemistry, Physics and Mechanical Engineering Queensland University of Technology (QUT) 2 George Street QLD 4000 Brisbane Australia
- Macromolecular Architectures Institut für Technische Chemie und Polymerchemie Karlsruhe Institute of Technology (KIT) Engesserstrasse 18 76131 Karlsruhe Germany
| | - Anja S. Goldmann
- School of Chemistry, Physics and Mechanical Engineering Queensland University of Technology (QUT) 2 George Street QLD 4000 Brisbane Australia
- Macromolecular Architectures Institut für Technische Chemie und Polymerchemie Karlsruhe Institute of Technology (KIT) Engesserstrasse 18 76131 Karlsruhe Germany
| | - Christopher Barner‐Kowollik
- School of Chemistry, Physics and Mechanical Engineering Queensland University of Technology (QUT) 2 George Street QLD 4000 Brisbane Australia
- Macromolecular Architectures Institut für Technische Chemie und Polymerchemie Karlsruhe Institute of Technology (KIT) Engesserstrasse 18 76131 Karlsruhe Germany
| |
Collapse
|
10
|
Sun H, Fan H, Eom H, Peng X. Coumarin-Induced DNA Ligation, Rearrangement to DNA Interstrand Crosslinks, and Photorelease of Coumarin Moiety. Chembiochem 2016; 17:2046-2053. [DOI: 10.1002/cbic.201600240] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Indexed: 12/30/2022]
Affiliation(s)
- Huabing Sun
- Department of Chemistry and Biochemistry; University of Wisconsin-Milwaukee; 3210 N. Cramer St. Milwaukee WI 53211 USA
| | - Heli Fan
- Department of Chemistry and Biochemistry; University of Wisconsin-Milwaukee; 3210 N. Cramer St. Milwaukee WI 53211 USA
| | - Hyeyoung Eom
- Department of Chemistry and Biochemistry; University of Wisconsin-Milwaukee; 3210 N. Cramer St. Milwaukee WI 53211 USA
| | - Xiaohua Peng
- Department of Chemistry and Biochemistry; University of Wisconsin-Milwaukee; 3210 N. Cramer St. Milwaukee WI 53211 USA
| |
Collapse
|
11
|
Nakamura S, Kawabata H, Fujimoto K. Sequence-Specific DNA Photosplitting of Crosslinked DNAs Containing the 3-Cyanovinylcarbazole Nucleoside by Using DNA Strand Displacement. Chembiochem 2016; 17:1499-503. [PMID: 27357523 DOI: 10.1002/cbic.201600236] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Indexed: 12/30/2022]
Abstract
An oligodeoxynucleotide (ODN) containing the ultrafast reversible 3-cyanovinylcarbazole ((CNV) K) photo-crosslinker was photo-crosslinked to a complementary strand upon exposure to 366 nm irradiation and photosplit by use of 312 nm irradiation. In this paper we report that the photoreaction of (CNV) K on irradiation at 366 nm involves a photostationary state and that its reaction can be controlled by temperature. Guided by this new insight, we proposed and have now demonstrated previously unknown photosplitting of (CNV) K aided by DNA strand displacement as an alternative to heating. The photo-crosslinked double-stranded DNA (dsDNA) underwent >80 % photosplitting aided by DNA strand displacement on irradiation at 366 nm without heating. In this photosplitting based on DNA strand displacement, the relative thermal stability of the invader strand with respect to the template strands plays an important role, and an invader strand/template strand system that is more stable than the passenger strand/template strand system induces photosplitting without heating. This new strand-displacement-aided photosplitting occurred in a sequence-specific manner through irradiation at 366 nm in the presence of an invader strand.
Collapse
Affiliation(s)
- Shigetaka Nakamura
- School of Materials Science, Japan Advanced Institute Science and Technology, 1-1 Asahi-dai, Nomi, Ishikawa, Japan
| | - Hayato Kawabata
- School of Materials Science, Japan Advanced Institute Science and Technology, 1-1 Asahi-dai, Nomi, Ishikawa, Japan
| | - Kenzo Fujimoto
- School of Materials Science, Japan Advanced Institute Science and Technology, 1-1 Asahi-dai, Nomi, Ishikawa, Japan.
| |
Collapse
|
12
|
Wang Y, Lin Z, Fan H, Peng X. Photoinduced DNA Interstrand Cross-Link Formation by Naphthalene Boronates via a Carbocation. Chemistry 2016; 22:10382-6. [DOI: 10.1002/chem.201601504] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Indexed: 12/12/2022]
Affiliation(s)
- Yibin Wang
- Department of Chemistry and Biochemistry; University of Wisconsin Milwaukee; 3210 N. Cramer St. Milwaukee WI 53211 USA
| | - Zechao Lin
- Department of Chemistry and Biochemistry; University of Wisconsin Milwaukee; 3210 N. Cramer St. Milwaukee WI 53211 USA
| | - Heli Fan
- Department of Chemistry and Biochemistry; University of Wisconsin Milwaukee; 3210 N. Cramer St. Milwaukee WI 53211 USA
| | - Xiaohua Peng
- Department of Chemistry and Biochemistry; University of Wisconsin Milwaukee; 3210 N. Cramer St. Milwaukee WI 53211 USA
| |
Collapse
|
13
|
Wu H, Zeng F, Zhang H, Xu J, Qiu J, Wu S. A Nanosystem Capable of Releasing a Photosensitizer Bioprecursor under Two-Photon Irradiation for Photodynamic Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2016; 3:1500254. [PMID: 27774388 PMCID: PMC5063179 DOI: 10.1002/advs.201500254] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 09/11/2015] [Indexed: 05/03/2023]
Abstract
The applications of photodynamic therapy (PDT) are usually limited by photosensitizers' side effects and singlet oxygen's short half-life. Herein, a mitochondria-targeted nanosystem is demonstrated to enhance the PDT efficacy by releasing a bio-precursor of photosensitizer under two-photon irradiation. A phototriggerable coumarin derivative is first synthesized by linking 5-aminolevulinic acid (5-ALA, the bio-precursor) to coumarin; and the nanosystem (CD-ALA-TPP) is then fabricated by covalently incorporating this coumarin derivative and a mitochondria-targeting compound triphenylphosphonium (TPP) onto carbon dots (CDs). Upon cellular internalization, the nanosystem preferentially accumulates in mitochondria; and under one- or two-photon irradiation, it releases 5-ALA molecules that are then metabolized into protoporphyrin IX in mitochondria through a series of biosynthesis processes. The subsequent red light irradiation induces this endogenously synthesized photosensitizer to generate singlet oxygen, thereby causing oxidant damage to mitochondria and then the apoptosis of the cells. Analysis via 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyltetrazolium bromide (MTT) assays indicate that the novel PDT system exhibits enhanced cytotoxicity toward cancer cells. This study may offer a new strategy for designing PDT systems with high efficacy and low side effects.
Collapse
Affiliation(s)
- Hao Wu
- College of Materials Science and Engineering State Key Laboratory of Luminescent Materials and Devices South China University of Technology Guangzhou 510640 P.R. China
| | - Fang Zeng
- College of Materials Science and Engineering State Key Laboratory of Luminescent Materials and Devices South China University of Technology Guangzhou 510640 P.R. China
| | - Hang Zhang
- Institute of Optical Communication Materials State Key Laboratory of Luminescent Materials and Devices South China University of Technology Guangzhou 510640 P.R. China
| | - Jiangsheng Xu
- College of Materials Science and Engineering State Key Laboratory of Luminescent Materials and Devices South China University of Technology Guangzhou 510640 P.R. China
| | - Jianrong Qiu
- Institute of Optical Communication Materials State Key Laboratory of Luminescent Materials and Devices South China University of Technology Guangzhou 510640 P.R. China
| | - Shuizhu Wu
- College of Materials Science and Engineering State Key Laboratory of Luminescent Materials and Devices South China University of Technology Guangzhou 510640 P.R. China
| |
Collapse
|