1
|
Saunders AC, Burch CR, Goldsmith CR. Towards gallium(III)-catalyzed aldehyde deformylation. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2021.120708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
2
|
Chen TY, Ho PH, Spyra CJ, Meyer F, Bill E, Ye S, Lee WZ. Ambiphilicity of a mononuclear cobalt(III) superoxo complex. Chem Commun (Camb) 2020; 56:14821-14824. [PMID: 33151205 DOI: 10.1039/d0cc05337f] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Addition of HOTf to a mixture of CoIII(BDPP)(O2˙) (1, H2BDPP = 2,6-bis((2-(S)-diphenylhydroxylmethyl-1-pyrrolidinyl)methyl)pyridine) and Cp*2Fe produced H2O2 in high yield implying formation of CoIII(BDPP)(OOH) (3), and reaction of Sc(OTf)3 with the same mixture gave a peroxo-bridged CoIII/ScIII5. These findings demonstrate the ambiphilic property of CoIII-superoxo 1.
Collapse
Affiliation(s)
- Ting-Yi Chen
- Department of Chemistry, National Taiwan Normal University, Taipei 11677, Taiwan. and Universität Göttingen, Institut für Anorganische Chemie, D-37077 Göttingen, Germany.
| | - Po-Hsun Ho
- Department of Chemistry, National Taiwan Normal University, Taipei 11677, Taiwan.
| | - Can-Jerome Spyra
- Universität Göttingen, Institut für Anorganische Chemie, D-37077 Göttingen, Germany.
| | - Franc Meyer
- Universität Göttingen, Institut für Anorganische Chemie, D-37077 Göttingen, Germany.
| | - Eckhard Bill
- Max-Planck-Institut für Chemische Energiekonversion, Mülheim an der Ruhr D-45470, Germany.
| | - Shengfa Ye
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China. and Max-Planck-Institut für Kohlenforschung, Mülheim an der Ruhr, D-45470, Germany.
| | - Way-Zen Lee
- Department of Chemistry, National Taiwan Normal University, Taipei 11677, Taiwan. and Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| |
Collapse
|
3
|
Yang J, Seo MS, Kim KH, Lee Y, Fukuzumi S, Shearer J, Nam W. Structure and Unprecedented Reactivity of a Mononuclear Nonheme Cobalt(III) Iodosylbenzene Complex. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202005091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Jindou Yang
- Department of Chemistry and Nano Science Ewha Womans University Seoul 03760 Korea
| | - Mi Sook Seo
- Department of Chemistry and Nano Science Ewha Womans University Seoul 03760 Korea
| | - Kyung Ha Kim
- Department of Chemistry and Nano Science Ewha Womans University Seoul 03760 Korea
| | - Yong‐Min Lee
- Department of Chemistry and Nano Science Ewha Womans University Seoul 03760 Korea
| | - Shunichi Fukuzumi
- Department of Chemistry and Nano Science Ewha Womans University Seoul 03760 Korea
| | - Jason Shearer
- Department of Chemistry Trinity University San Antonio TX 78212 USA
| | - Wonwoo Nam
- Department of Chemistry and Nano Science Ewha Womans University Seoul 03760 Korea
- School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710119 China
| |
Collapse
|
4
|
Lin YH, Kutin Y, van Gastel M, Bill E, Schnegg A, Ye S, Lee WZ. A Manganese(IV)-Hydroperoxo Intermediate Generated by Protonation of the Corresponding Manganese(III)-Superoxo Complex. J Am Chem Soc 2020; 142:10255-10260. [PMID: 32412757 DOI: 10.1021/jacs.0c02756] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Earlier work revealed that metal-superoxo species primarily function as radicals and/or electrophiles. Herein, we present ambiphilicity of a MnIII-superoxo complex revealed by its proton- and metal-coupled electron-transfer processes. Specifically, a MnIV-hydroperoxo intermediate, [Mn(BDPBrP)(OOH)]+ (1, H2BDPBrP = 2,6-bis((2-(S)-di(4-bromo)phenylhydroxylmethyl-1-pyrrolidinyl)methyl)pyridine) was generated by treatment of a MnIII-superoxo complex, Mn(BDPBrP)(O2•) (2) with trifluoroacetic acid at -120 °C. Detailed insights into the electronic structure of 1 are obtained using resonance Raman and multi-frequency electron paramagnetic resonance spectroscopies coupled with density functional theory calculations. Similarly, the reaction of 2 with scandium(III) triflate was shown to give a Mn(IV)/Sc(III) bridging peroxo species, [Mn(BDPBrP)(OO)Sc(OTf)n](3-n)+ (4). Furthermore, it is found that deprotonation of 1 quantitatively regenerates 2, and that one-electron oxidation of the corresponding MnIII-hydroperoxo species, Mn(BDPBrP)(OOH) (3), also yields 1.
Collapse
Affiliation(s)
- Yen-Hao Lin
- Department of Chemistry, National Taiwan Normal University, Taipei 11677, Taiwan
| | - Yury Kutin
- Max-Planck-Institut für Chemische Energiekonversion, Mülheim an der Ruhr D-45470, Germany
| | - Maurice van Gastel
- Max-Planck-Institut für Kohlenforschung, Mülheim an der Ruhr D-45470, Germany
| | - Eckhard Bill
- Max-Planck-Institut für Chemische Energiekonversion, Mülheim an der Ruhr D-45470, Germany
| | - Alexander Schnegg
- Max-Planck-Institut für Chemische Energiekonversion, Mülheim an der Ruhr D-45470, Germany
| | - Shengfa Ye
- Max-Planck-Institut für Kohlenforschung, Mülheim an der Ruhr D-45470, Germany.,State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Way-Zen Lee
- Department of Chemistry, National Taiwan Normal University, Taipei 11677, Taiwan.,Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| |
Collapse
|
5
|
Yang J, Seo MS, Kim KH, Lee Y, Fukuzumi S, Shearer J, Nam W. Structure and Unprecedented Reactivity of a Mononuclear Nonheme Cobalt(III) Iodosylbenzene Complex. Angew Chem Int Ed Engl 2020; 59:13581-13585. [DOI: 10.1002/anie.202005091] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Indexed: 12/21/2022]
Affiliation(s)
- Jindou Yang
- Department of Chemistry and Nano Science Ewha Womans University Seoul 03760 Korea
| | - Mi Sook Seo
- Department of Chemistry and Nano Science Ewha Womans University Seoul 03760 Korea
| | - Kyung Ha Kim
- Department of Chemistry and Nano Science Ewha Womans University Seoul 03760 Korea
| | - Yong‐Min Lee
- Department of Chemistry and Nano Science Ewha Womans University Seoul 03760 Korea
| | - Shunichi Fukuzumi
- Department of Chemistry and Nano Science Ewha Womans University Seoul 03760 Korea
| | - Jason Shearer
- Department of Chemistry Trinity University San Antonio TX 78212 USA
| | - Wonwoo Nam
- Department of Chemistry and Nano Science Ewha Womans University Seoul 03760 Korea
- School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710119 China
| |
Collapse
|
6
|
Schön F, Biebl F, Greb L, Leingang S, Grimm‐Lebsanft B, Teubner M, Buchenau S, Kaifer E, Rübhausen MA, Himmel H. On the Metal Cooperativity in a Dinuclear Copper–Guanidine Complex for Aliphatic C−H Bond Cleavage by Dioxygen. Chemistry 2019; 25:11257-11268. [DOI: 10.1002/chem.201901906] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Indexed: 01/01/2023]
Affiliation(s)
- Florian Schön
- Anorganisch-Chemisches InstitutRuprecht-Karls-Universität Heidelberg Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Florian Biebl
- Institut für Nanostruktur- und FestkörperphysikUniversität Hamburg and Center for Free Electron Laser Science Luruper Chaussee 149 22761 Hamburg Germany
| | - Lutz Greb
- Anorganisch-Chemisches InstitutRuprecht-Karls-Universität Heidelberg Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Simone Leingang
- Anorganisch-Chemisches InstitutRuprecht-Karls-Universität Heidelberg Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Benjamin Grimm‐Lebsanft
- Institut für Nanostruktur- und FestkörperphysikUniversität Hamburg and Center for Free Electron Laser Science Luruper Chaussee 149 22761 Hamburg Germany
| | - Melissa Teubner
- Institut für Nanostruktur- und FestkörperphysikUniversität Hamburg and Center for Free Electron Laser Science Luruper Chaussee 149 22761 Hamburg Germany
| | - Sören Buchenau
- Institut für Nanostruktur- und FestkörperphysikUniversität Hamburg and Center for Free Electron Laser Science Luruper Chaussee 149 22761 Hamburg Germany
| | - Elisabeth Kaifer
- Anorganisch-Chemisches InstitutRuprecht-Karls-Universität Heidelberg Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Michael A. Rübhausen
- Institut für Nanostruktur- und FestkörperphysikUniversität Hamburg and Center for Free Electron Laser Science Luruper Chaussee 149 22761 Hamburg Germany
| | - Hans‐Jörg Himmel
- Anorganisch-Chemisches InstitutRuprecht-Karls-Universität Heidelberg Im Neuenheimer Feld 270 69120 Heidelberg Germany
| |
Collapse
|
7
|
|
8
|
Magherusan AM, Kal S, Nelis DN, Doyle LM, Farquhar ER, Que L, McDonald AR. A Mn II Mn III -Peroxide Complex Capable of Aldehyde Deformylation. Angew Chem Int Ed Engl 2019; 58:5718-5722. [PMID: 30830996 DOI: 10.1002/anie.201900717] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 02/27/2019] [Indexed: 11/07/2022]
Abstract
Ribonucleotide reductases (RNRs) are essential enzymes required for DNA synthesis. In class Ib Mn2 RNRs superoxide (O2 .- ) was postulated to react with the MnII 2 core to yield a MnII MnIII -peroxide moiety. The reactivity of complex 1 ([MnII 2 (O2 CCH3 )2 (BPMP)](ClO4 ), where HBPMP=2,6-bis{[(bis(2-pyridylmethyl)amino]methyl}-4-methylphenol) towards O2 .- was investigated at -90 °C, generating a metastable species, 2. The electronic absorption spectrum of 2 displayed features (λmax =440, 590 nm) characteristic of a MnII MnIII -peroxide species, representing just the second example of such. Electron paramagnetic resonance and X-ray absorption spectroscopies, and mass spectrometry supported the formulation of 2 as a MnII MnIII -peroxide complex. Unlike all other previously reported Mn2 -peroxides, which were unreactive, 2 proved to be a capable oxidant in aldehyde deformylation. Our studies provide insight into the mechanism of O2 -activation in Class Ib Mn2 RNRs, and the highly reactive intermediates in their catalytic cycle.
Collapse
Affiliation(s)
- Adriana M Magherusan
- School of Chemistry, Trinity College Dublin, The University of Dublin, College Green, Dublin 2, Ireland
| | - Subhasree Kal
- Department of Chemistry and Centre for Metals in Biocatalysis, University of Minnesota, 207 Pleasant St. SE, Minneapolis, MN, 55455, USA
| | - Daniel N Nelis
- School of Chemistry, Trinity College Dublin, The University of Dublin, College Green, Dublin 2, Ireland
| | - Lorna M Doyle
- School of Chemistry, Trinity College Dublin, The University of Dublin, College Green, Dublin 2, Ireland
| | - Erik R Farquhar
- Case Western Reserve University Centre for Synchrotron Biosciences, National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - Lawrence Que
- Department of Chemistry and Centre for Metals in Biocatalysis, University of Minnesota, 207 Pleasant St. SE, Minneapolis, MN, 55455, USA
| | - Aidan R McDonald
- School of Chemistry, Trinity College Dublin, The University of Dublin, College Green, Dublin 2, Ireland
| |
Collapse
|
9
|
Noh H, Cho J. Synthesis, characterization and reactivity of non-heme 1st row transition metal-superoxo intermediates. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2018.12.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
10
|
Panda C, Chandra A, Corona T, Andris E, Pandey B, Garai S, Lindenmaier N, Künstner S, Farquhar ER, Roithová J, Rajaraman G, Driess M, Ray K. Nucleophilic versus Electrophilic Reactivity of Bioinspired Superoxido Nickel(II) Complexes. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201808085] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Chakadola Panda
- Department of Chemistry, Metalorganics and Inorganic Materials; Technische Universität Berlin; Strasse des 17. Juni 135, Sekr. C2 10623 Berlin Germany
| | - Anirban Chandra
- Department of Chemistry; Humboldt-Universität zu Berlin; Brook-Taylor-Strasse 2 12489 Berlin Germany
| | - Teresa Corona
- Department of Chemistry; Humboldt-Universität zu Berlin; Brook-Taylor-Strasse 2 12489 Berlin Germany
| | - Erik Andris
- Department of Organic Chemistry; Faculty of Science; Charles University; Hlavova 2030/8 128 43 Prague 2 Czech Republic
| | - Bhawana Pandey
- Department of Chemistry; Indian Institute of Technology Bombay; Powai Mumbai Maharashtra 400 076 India
| | - Somenath Garai
- Department of Chemistry, Metalorganics and Inorganic Materials; Technische Universität Berlin; Strasse des 17. Juni 135, Sekr. C2 10623 Berlin Germany
| | - Nils Lindenmaier
- Department of Chemistry, Metalorganics and Inorganic Materials; Technische Universität Berlin; Strasse des 17. Juni 135, Sekr. C2 10623 Berlin Germany
| | - Silvio Künstner
- Berlin Joint EPR lab, Institute Nanospectroscopy; Helmholtz-, Zentrum Berlin für Materialien und Energie; Berlin Germany
| | - Erik R. Farquhar
- CWRU Center for Synchrotron Biosciences, NSLS-II; Brookhaven National Laboratory; Upton NY 11973 USA
| | - Jana Roithová
- Department of Organic Chemistry; Faculty of Science; Charles University; Hlavova 2030/8 128 43 Prague 2 Czech Republic
- Institute for Molecules and Materials, Radboud University; Heyendaalseweg 135 6525 AJ Nijmegen The Netherlands
| | - Gopalan Rajaraman
- Department of Chemistry; Indian Institute of Technology Bombay; Powai Mumbai Maharashtra 400 076 India
| | - Matthias Driess
- Department of Chemistry, Metalorganics and Inorganic Materials; Technische Universität Berlin; Strasse des 17. Juni 135, Sekr. C2 10623 Berlin Germany
| | - Kallol Ray
- Department of Chemistry; Humboldt-Universität zu Berlin; Brook-Taylor-Strasse 2 12489 Berlin Germany
| |
Collapse
|
11
|
Nucleophilic versus Electrophilic Reactivity of Bioinspired Superoxido Nickel(II) Complexes. Angew Chem Int Ed Engl 2018; 57:14883-14887. [DOI: 10.1002/anie.201808085] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Revised: 08/26/2018] [Indexed: 11/07/2022]
|
12
|
|
13
|
Paria S, Morimoto Y, Ohta T, Okabe S, Sugimoto H, Ogura T, Itoh S. Copper(I)–Dioxygen Reactivity in the Isolated Cavity of a Nanoscale Molecular Architecture. Eur J Inorg Chem 2018. [DOI: 10.1002/ejic.201800029] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Sayantan Paria
- Department of Material and Life Science Division of Advanced Science and Biotechnology Graduate School of Engineering Osaka University 2‐1 Yamadaoka 565‐0871 Suita Osaka Japan
| | - Yuma Morimoto
- Department of Material and Life Science Division of Advanced Science and Biotechnology Graduate School of Engineering Osaka University 2‐1 Yamadaoka 565‐0871 Suita Osaka Japan
| | - Takehiro Ohta
- Picobiology Institute Graduate School of Life Science University of Hyogo Koto 1‐1‐1 679‐5148 Sayo‐cho Sayo‐gun, Hyogo Japan
| | - Shinsuke Okabe
- Department of Material and Life Science Division of Advanced Science and Biotechnology Graduate School of Engineering Osaka University 2‐1 Yamadaoka 565‐0871 Suita Osaka Japan
| | - Hideki Sugimoto
- Department of Material and Life Science Division of Advanced Science and Biotechnology Graduate School of Engineering Osaka University 2‐1 Yamadaoka 565‐0871 Suita Osaka Japan
| | - Takashi Ogura
- Picobiology Institute Graduate School of Life Science University of Hyogo Koto 1‐1‐1 679‐5148 Sayo‐cho Sayo‐gun, Hyogo Japan
| | - Shinobu Itoh
- Department of Material and Life Science Division of Advanced Science and Biotechnology Graduate School of Engineering Osaka University 2‐1 Yamadaoka 565‐0871 Suita Osaka Japan
| |
Collapse
|
14
|
Magherusan AM, Zhou A, Farquhar ER, García-Melchor M, Twamley B, Que L, McDonald AR. Mimicking Class I b Mn 2 -Ribonucleotide Reductase: A Mn II2 Complex and Its Reaction with Superoxide. Angew Chem Int Ed Engl 2017; 57:918-922. [PMID: 29165865 DOI: 10.1002/anie.201709806] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 11/02/2017] [Indexed: 02/05/2023]
Abstract
A fascinating discovery in the chemistry of ribonucleotide reductases (RNRs) has been the identification of a dimanganese (Mn2 ) active site in class I b RNRs that requires superoxide anion (O2.- ), rather than dioxygen (O2 ), to access a high-valent Mn2 oxidant. Complex 1 ([Mn2 (O2 CCH3 )(N-Et-HPTB)](ClO4 )2 , N-Et-HPTB=N,N,N',N'-tetrakis(2-(1-ethylbenzimidazolyl))-2-hydroxy-1,3-diaminopropane) was synthesised in high yield (90 %). 1 was reacted with O2.- at -40 °C resulting in the formation of a metastable species (2). 2 displayed electronic absorption features (λmax =460, 610 nm) typical of a Mn-peroxide species and a 29-line EPR signal typical of a MnII MnIII entity. Mn K-edge X-ray absorption near-edge spectroscopy (XANES) suggested a formal oxidation state change of MnII2 in 1 to MnII MnIII for 2. Electrospray ionisation mass spectrometry (ESI-MS) suggested 2 to be a MnII MnIII -peroxide complex. 2 was capable of oxidizing ferrocene and weak O-H bonds upon activation with proton donors. Our findings provide support for the postulated mechanism of O2.- activation at class I b Mn2 RNRs.
Collapse
Affiliation(s)
- Adriana M Magherusan
- School of Chemistry and CRANN/AMBER Nanoscience Institute, Trinity College Dublin, The University of Dublin, College Green, Dublin 2, Ireland
| | - Ang Zhou
- Department of Chemistry and Center for Metals in Biocatalysis, University of Minnesota, 207 Pleasant St. SE, Minneapolis, MN, 55455, USA
| | - Erik R Farquhar
- Case Western Reserve University Center for Synchrotron Biosciences, National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - Max García-Melchor
- School of Chemistry and CRANN/AMBER Nanoscience Institute, Trinity College Dublin, The University of Dublin, College Green, Dublin 2, Ireland
| | - Brendan Twamley
- School of Chemistry and CRANN/AMBER Nanoscience Institute, Trinity College Dublin, The University of Dublin, College Green, Dublin 2, Ireland
| | - Lawrence Que
- Department of Chemistry and Center for Metals in Biocatalysis, University of Minnesota, 207 Pleasant St. SE, Minneapolis, MN, 55455, USA
| | - Aidan R McDonald
- School of Chemistry and CRANN/AMBER Nanoscience Institute, Trinity College Dublin, The University of Dublin, College Green, Dublin 2, Ireland
| |
Collapse
|
15
|
Magherusan AM, Zhou A, Farquhar ER, García-Melchor M, Twamley B, Que L, McDonald AR. Mimicking Class I b Mn2
-Ribonucleotide Reductase: A MnII
2
Complex and Its Reaction with Superoxide. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201709806] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Adriana M. Magherusan
- School of Chemistry and CRANN/AMBER Nanoscience Institute; Trinity College Dublin; The University of Dublin; College Green Dublin 2 Ireland
| | - Ang Zhou
- Department of Chemistry and Center for Metals in Biocatalysis; University of Minnesota; 207 Pleasant St. SE Minneapolis MN 55455 USA
| | - Erik R. Farquhar
- Case Western Reserve University Center for Synchrotron Biosciences; National Synchrotron Light Source II, Brookhaven National Laboratory; Upton NY 11973 USA
| | - Max García-Melchor
- School of Chemistry and CRANN/AMBER Nanoscience Institute; Trinity College Dublin; The University of Dublin; College Green Dublin 2 Ireland
| | - Brendan Twamley
- School of Chemistry and CRANN/AMBER Nanoscience Institute; Trinity College Dublin; The University of Dublin; College Green Dublin 2 Ireland
| | - Lawrence Que
- Department of Chemistry and Center for Metals in Biocatalysis; University of Minnesota; 207 Pleasant St. SE Minneapolis MN 55455 USA
| | - Aidan R. McDonald
- School of Chemistry and CRANN/AMBER Nanoscience Institute; Trinity College Dublin; The University of Dublin; College Green Dublin 2 Ireland
| |
Collapse
|
16
|
Devi T, Lee Y, Jung J, Sankaralingam M, Nam W, Fukuzumi S. A Chromium(III)‐Superoxo Complex as a Three‐Electron Oxidant with a Large Tunneling Effect in Multi‐Electron Oxidation of NADH Analogues. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201611709] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Tarali Devi
- Department of Chemistry and Nano Science Ewha Womans University Seoul 03760 Korea
| | - Yong‐Min Lee
- Department of Chemistry and Nano Science Ewha Womans University Seoul 03760 Korea
| | - Jieun Jung
- Department of Chemistry and Nano Science Ewha Womans University Seoul 03760 Korea
| | | | - Wonwoo Nam
- Department of Chemistry and Nano Science Ewha Womans University Seoul 03760 Korea
- State Key Laboratory for Oxo Synthesis and Selective Oxidation Lanzhou Institute of Chemical Physics Chinese Academy of Sciences Lanzhou 730000 China
| | - Shunichi Fukuzumi
- Department of Chemistry and Nano Science Ewha Womans University Seoul 03760 Korea
- Faculty of Science and Engineering SENTAN Japan Science and Technology Agency (JST) Meijo University Nagoya, Aichi 468-8502 Japan
| |
Collapse
|
17
|
Devi T, Lee YM, Jung J, Sankaralingam M, Nam W, Fukuzumi S. A Chromium(III)-Superoxo Complex as a Three-Electron Oxidant with a Large Tunneling Effect in Multi-Electron Oxidation of NADH Analogues. Angew Chem Int Ed Engl 2017; 56:3510-3515. [PMID: 28266771 DOI: 10.1002/anie.201611709] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 01/15/2017] [Indexed: 11/06/2022]
Abstract
Metal-superoxo species are involved in a variety of enzymatic oxidation reactions, and multi-electron oxidation of substrates is frequently observed in those enzymatic reactions. A CrIII -superoxo complex, [CrIII (O2 )(TMC)(Cl)]+ (1; TMC=1,4,8,11-tetramethyl-1,4,8,11-tetraazacyclotetradecane), is described that acts as a novel three-electron oxidant in the oxidation of dihydronicotinamide adenine dinucleotide (NADH) analogues. In the reactions of 1 with NADH analogues, a CrIV -oxo complex, [CrIV (O)(TMC)(Cl)]+ (2), is formed by a heterolytic O-O bond cleavage of a putative CrII -hydroperoxo complex, [CrII (OOH)(TMC)(Cl)], which is generated by hydride transfer from NADH analogues to 1. The comparison of the reactivity of NADH analogues with 1 and p-chloranil (Cl4 Q) indicates that oxidation of NADH analogues by 1 proceeds by proton-coupled electron transfer with a very large tunneling effect (for example, with a kinetic isotope effect of 470 at 233 K), followed by rapid electron transfer.
Collapse
Affiliation(s)
- Tarali Devi
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul, 03760, Korea
| | - Yong-Min Lee
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul, 03760, Korea
| | - Jieun Jung
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul, 03760, Korea
| | | | - Wonwoo Nam
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul, 03760, Korea.,State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Shunichi Fukuzumi
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul, 03760, Korea.,Faculty of Science and Engineering, SENTAN Japan Science and Technology Agency (JST), Meijo University, Nagoya, Aichi, 468-8502, Japan
| |
Collapse
|
18
|
Wang M, Lu J, Ma J, Zhang Z, Wang F. Cuprous Oxide Catalyzed Oxidative CC Bond Cleavage for CN Bond Formation: Synthesis of Cyclic Imides from Ketones and Amines. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201508071] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Min Wang
- State Key Laboratory of Catalysis (SKLC), Dalian National Laboratory for Clean Energy (DNL), Dalian Institute of Chemical Physics (DICP), Chinese Academy of Sciences, Dalian 116023 (China)
| | - Jianmin Lu
- State Key Laboratory of Catalysis (SKLC), Dalian National Laboratory for Clean Energy (DNL), Dalian Institute of Chemical Physics (DICP), Chinese Academy of Sciences, Dalian 116023 (China)
| | - Jiping Ma
- State Key Laboratory of Catalysis (SKLC), Dalian National Laboratory for Clean Energy (DNL), Dalian Institute of Chemical Physics (DICP), Chinese Academy of Sciences, Dalian 116023 (China)
| | - Zhe Zhang
- State Key Laboratory of Catalysis (SKLC), Dalian National Laboratory for Clean Energy (DNL), Dalian Institute of Chemical Physics (DICP), Chinese Academy of Sciences, Dalian 116023 (China)
| | - Feng Wang
- State Key Laboratory of Catalysis (SKLC), Dalian National Laboratory for Clean Energy (DNL), Dalian Institute of Chemical Physics (DICP), Chinese Academy of Sciences, Dalian 116023 (China)
| |
Collapse
|
19
|
Wang M, Lu J, Ma J, Zhang Z, Wang F. Cuprous Oxide Catalyzed Oxidative CC Bond Cleavage for CN Bond Formation: Synthesis of Cyclic Imides from Ketones and Amines. Angew Chem Int Ed Engl 2015; 54:14061-5. [DOI: 10.1002/anie.201508071] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Indexed: 12/17/2022]
|
20
|
Oddon F, Chiba Y, Nakazawa J, Ohta T, Ogura T, Hikichi S. Characterization of Mononuclear Non-heme Iron(III)-Superoxo Complex with a Five-Azole Ligand Set. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201502367] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
21
|
Oddon F, Chiba Y, Nakazawa J, Ohta T, Ogura T, Hikichi S. Characterization of Mononuclear Non-heme Iron(III)-Superoxo Complex with a Five-Azole Ligand Set. Angew Chem Int Ed Engl 2015; 54:7336-9. [DOI: 10.1002/anie.201502367] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Indexed: 12/25/2022]
|
22
|
Pirovano P, Farquhar ER, Swart M, Fitzpatrick AJ, Morgan GG, McDonald AR. Characterization and reactivity of a terminal nickel(III)-oxygen adduct. Chemistry 2015; 21:3785-90. [PMID: 25612563 DOI: 10.1002/chem.201406485] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Indexed: 11/06/2022]
Abstract
High-valent terminal metal-oxygen adducts are hypothesized to be the potent oxidizing reactants in late transition metal oxidation catalysis. In particular, examples of high-valent terminal nickel-oxygen adducts are scarce, meaning there is a dearth in the understanding of such oxidants. A monoanionic Ni(II)-bicarbonate complex has been found to react in a 1:1 ratio with the one-electron oxidant tris(4-bromophenyl)ammoniumyl hexachloroantimonate, yielding a thermally unstable intermediate in high yield (ca. 95%). Electronic absorption, electronic paramagnetic resonance, and X-ray absorption spectroscopies and density functional theory calculations confirm its description as a low-spin (S = 1/2), square planar Ni(III)-oxygen adduct. This rare example of a high-valent terminal nickel-oxygen complex performs oxidations of organic substrates, including 2,6-di-tert-butylphenol and triphenylphosphine, which are indicative of hydrogen atom abstraction and oxygen atom transfer reactivity, respectively.
Collapse
Affiliation(s)
- Paolo Pirovano
- School of Chemistry and CRANN/AMBER Nanoscience Institute, The University of Dublin, Trinity College, College Green, Dublin 2 (Ireland)
| | | | | | | | | | | |
Collapse
|