Li L, Wang S, Lan H, Gong G, Zhu Y, Tse YC, Wong KM. Rhodol Derivatives as Selective Fluorescent Probes for the Detection of Hg
II Ions and the Bioimaging of Hypochlorous Acid.
ChemistryOpen 2018;
7:136-143. [PMID:
29435399 PMCID:
PMC5792738 DOI:
10.1002/open.201700154]
[Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Indexed: 12/17/2022] Open
Abstract
Two sensors, 1 with a spirolactone group and 2 with a spirolactam group containing a phenyl isothiocyanate moiety, based on rhodol, were designed and synthesized in order to obtain materials with excellent optical properties for the detection of environmentally and biologically important Hg2+ and hypochlorous acid (HClO) ions. The crystal structure of 1 revealed two moieties, a rhodamine-like portion with a spirolactone and a fluorescein-like portion without a spirolactone. In the absence of analyte, 1 produced an optical output with a maximum absorption and emission at 475 and 570 nm, respectively, which was attributed to the fluorescein-like moiety without a spirolactone. In contrast, the rhodamine-like moiety containing a spirolactone was activated by the addition of H+ or Hg2+ ions, and 1 yielded new absorption and emission peaks at 530 and 612 nm, respectively. Further functionalization with a phenyl isothiocyanate group afforded 2, a fluorescent probe for HClO. High selectivity and sensitivity towards the hypochlorite ion were anticipated, owing to the stoichiometric and irreversible formation of a thiosemicarbazide group, which led to dramatic fluorescence responses. With good functionality at physiological pH, probe 2 was successfully used to image HClO in HeLa cells.
Collapse