1
|
Li W, Zheng Y, Qu E, Bai J, Deng Q. β
‐Keto Amides: A Jack‐of‐All‐Trades Building Block in Organic Chemistry. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100692] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Wanfang Li
- School of Materials and Chemistry University of Shanghai for Science and Technology Shanghai 200093 P. R. China
| | - Yan Zheng
- School of Materials and Chemistry University of Shanghai for Science and Technology Shanghai 200093 P. R. China
| | - Erdong Qu
- School of Materials and Chemistry University of Shanghai for Science and Technology Shanghai 200093 P. R. China
| | - Jin Bai
- School of Materials and Chemistry University of Shanghai for Science and Technology Shanghai 200093 P. R. China
| | - Qinyue Deng
- School of Materials and Chemistry University of Shanghai for Science and Technology Shanghai 200093 P. R. China
| |
Collapse
|
2
|
Zhou C, Lv J, Xu W, Lu H, Kato T, Liu Y, Maruoka K. Highly Selective Monoalkylation of Active Methylene and Related Derivatives using Alkylsilyl Peroxides by a Catalytic CuI‐DMAP System. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100440] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Canhua Zhou
- School of Chemical Engineering and Light Industry Guangdong University of Technology Guangzhou 510006 P. R. China
| | - Jiamin Lv
- School of Chemical Engineering and Light Industry Guangdong University of Technology Guangzhou 510006 P. R. China
| | - Weiping Xu
- School of Chemical Engineering and Light Industry Guangdong University of Technology Guangzhou 510006 P. R. China
| | - Hanbin Lu
- School of Chemical Engineering and Light Industry Guangdong University of Technology Guangzhou 510006 P. R. China
| | - Terumasa Kato
- School of Chemical Engineering and Light Industry Guangdong University of Technology Guangzhou 510006 P. R. China
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery Guangdong University of Technology Guangzhou 510006 P. R. China
- Graduate School of Pharmaceutical Sciences Kyoto University Sakyo Kyoto 606-8501 Japan
| | - Yan Liu
- School of Chemical Engineering and Light Industry Guangdong University of Technology Guangzhou 510006 P. R. China
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery Guangdong University of Technology Guangzhou 510006 P. R. China
| | - Keiji Maruoka
- School of Chemical Engineering and Light Industry Guangdong University of Technology Guangzhou 510006 P. R. China
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery Guangdong University of Technology Guangzhou 510006 P. R. China
- Graduate School of Pharmaceutical Sciences Kyoto University Sakyo Kyoto 606-8501 Japan
| |
Collapse
|
3
|
Wu Y, Huo X, Zhang W. Synergistic Pd/Cu Catalysis in Organic Synthesis. Chemistry 2020; 26:4895-4916. [DOI: 10.1002/chem.201904495] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Indexed: 12/31/2022]
Affiliation(s)
- Yue Wu
- Shanghai Key Laboratory for Molecular Engineering of Chiral DrugsSchool of Chemistry and Chemical EngineeringShanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 P. R. China
- Zhiyuan CollegeShanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 P. R. China
| | - Xiaohong Huo
- Shanghai Key Laboratory for Molecular Engineering of Chiral DrugsSchool of Chemistry and Chemical EngineeringShanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 P. R. China
| | - Wanbin Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral DrugsSchool of Chemistry and Chemical EngineeringShanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 P. R. China
- College of Chemistry and Molecular EngineeringZhengzhou University 75 Daxue Road Zhengzhou 450052 P. R. China
| |
Collapse
|
4
|
Sweeney JB, Ball AK, Smith LJ. Catalytic C−C Bond Formation Using a Simple Nickel Precatalyst System: Base‐ and Activator‐Free Direct C‐Allylation by Alcohols and Amines. Chemistry 2018. [DOI: 10.1002/chem.201801241] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
| | - Anthony K. Ball
- Department of Chemical SciencesUniversity of Huddersfield Queensgate Huddersfield HD1 3DH UK
| | - Luke J. Smith
- Department of Chemical SciencesUniversity of Huddersfield Queensgate Huddersfield HD1 3DH UK
| |
Collapse
|
5
|
Direct Allylation of Active Methylene Compounds with Allylic Alcohols by Use of Palladium/Phosphine-Borane Catalyst System. Adv Synth Catal 2018. [DOI: 10.1002/adsc.201800187] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
6
|
Watanabe K, Ohshima T. Bioconjugation with Thiols by Benzylic Substitution. Chemistry 2018; 24:3959-3964. [PMID: 29457301 DOI: 10.1002/chem.201706149] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Indexed: 12/11/2022]
Abstract
A benzylic substitution of 3-indolyl(hydroxyl)acetate derivatives with thiols proceeded specifically in the presence of amino, carboxy, and phosphate groups in weakly acidic aqueous solutions under nearly physiological condition, while no reaction occurred at pH over 7. Kinetic studies revealed that the reaction followed second-order kinetics (first-order in the reactant and first-order in thiol) in contrast with the SN 1 mechanism of common benzylic substitution of alcohols. The utility of the present method for functionalization of biomacromolecules was demonstrated using several model proteins, such as lysozyme, insulin, trypsin, and serum albumin. The catalytic bioactivity of lysozyme in lysis of Micrococcus lysodeikticus cells was completely retained after the modification.
Collapse
Affiliation(s)
- Kenji Watanabe
- Graduate School of Pharmaceutical Sciences, Kyushu University, Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Takashi Ohshima
- Graduate School of Pharmaceutical Sciences, Kyushu University, Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| |
Collapse
|
7
|
Li J, Lin L, Hu B, Zhou P, Huang T, Liu X, Feng X. Gold(I)/Chiral
N
,
N′
‐Dioxide–Nickel(II) Relay Catalysis for Asymmetric Tandem Intermolecular Hydroalkoxylation/Claisen Rearrangement. Angew Chem Int Ed Engl 2016; 56:885-888. [DOI: 10.1002/anie.201611214] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Indexed: 01/04/2023]
Affiliation(s)
- Jun Li
- Key Laboratory of Green Chemistry & Technology Ministry of Education College of Chemistry Sichuan University Chengdu 610064 China
| | - Lili Lin
- Key Laboratory of Green Chemistry & Technology Ministry of Education College of Chemistry Sichuan University Chengdu 610064 China
| | - Bowen Hu
- Key Laboratory of Green Chemistry & Technology Ministry of Education College of Chemistry Sichuan University Chengdu 610064 China
| | - Pengfei Zhou
- Key Laboratory of Green Chemistry & Technology Ministry of Education College of Chemistry Sichuan University Chengdu 610064 China
| | - Tianyu Huang
- Key Laboratory of Green Chemistry & Technology Ministry of Education College of Chemistry Sichuan University Chengdu 610064 China
| | - Xiaohua Liu
- Key Laboratory of Green Chemistry & Technology Ministry of Education College of Chemistry Sichuan University Chengdu 610064 China
| | - Xiaoming Feng
- Key Laboratory of Green Chemistry & Technology Ministry of Education College of Chemistry Sichuan University Chengdu 610064 China
- Collaborative Innovation Center of Chemical Science and Engineering Tianjin China
| |
Collapse
|
8
|
Li J, Lin L, Hu B, Zhou P, Huang T, Liu X, Feng X. Gold(I)/Chiral
N
,
N′
‐Dioxide–Nickel(II) Relay Catalysis for Asymmetric Tandem Intermolecular Hydroalkoxylation/Claisen Rearrangement. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201611214] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Jun Li
- Key Laboratory of Green Chemistry & Technology Ministry of Education College of Chemistry Sichuan University Chengdu 610064 China
| | - Lili Lin
- Key Laboratory of Green Chemistry & Technology Ministry of Education College of Chemistry Sichuan University Chengdu 610064 China
| | - Bowen Hu
- Key Laboratory of Green Chemistry & Technology Ministry of Education College of Chemistry Sichuan University Chengdu 610064 China
| | - Pengfei Zhou
- Key Laboratory of Green Chemistry & Technology Ministry of Education College of Chemistry Sichuan University Chengdu 610064 China
| | - Tianyu Huang
- Key Laboratory of Green Chemistry & Technology Ministry of Education College of Chemistry Sichuan University Chengdu 610064 China
| | - Xiaohua Liu
- Key Laboratory of Green Chemistry & Technology Ministry of Education College of Chemistry Sichuan University Chengdu 610064 China
| | - Xiaoming Feng
- Key Laboratory of Green Chemistry & Technology Ministry of Education College of Chemistry Sichuan University Chengdu 610064 China
- Collaborative Innovation Center of Chemical Science and Engineering Tianjin China
| |
Collapse
|
9
|
Panish RA, Chintala SR, Fox JM. A Mixed-Ligand Chiral Rhodium(II) Catalyst Enables the Enantioselective Total Synthesis of Piperarborenine B. Angew Chem Int Ed Engl 2016; 55:4983-7. [PMID: 26991451 PMCID: PMC4900183 DOI: 10.1002/anie.201600766] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Indexed: 12/19/2022]
Abstract
A novel, mixed-ligand chiral rhodium(II) catalyst, Rh2(S-NTTL)3(dCPA), has enabled the first enantioselective total synthesis of the natural product piperarborenine B. A crystal structure of Rh2(S-NTTL)3(dCPA) reveals a "chiral crown" conformation with a bulky dicyclohexylphenyl acetate ligand and three N-naphthalimido groups oriented on the same face of the catalyst. The natural product was prepared on large scale using rhodium-catalyzed bicyclobutanation/ copper-catalyzed homoconjugate addition chemistry in the key step. The route proceeds in ten steps with an 8% overall yield and 92% ee.
Collapse
Affiliation(s)
- Robert A Panish
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, 19716, USA
| | - Srinivasa R Chintala
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, 19716, USA
| | - Joseph M Fox
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, 19716, USA.
| |
Collapse
|
10
|
Liu QL, Chen W, Jiang QY, Bai XF, Li Z, Xu Z, Xu LW. A d
-Camphor-Based Schiff Base as a Highly Efficient N,P Ligand for Enantioselective Palladium-Catalyzed Allylic Substitutions. ChemCatChem 2016. [DOI: 10.1002/cctc.201600084] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Qiao-Ling Liu
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education; Hangzhou Normal University; No 1378, Wenyi West Road, Science Park of HZNU Hangzhou P.R. China
| | - Weifeng Chen
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education; Hangzhou Normal University; No 1378, Wenyi West Road, Science Park of HZNU Hangzhou P.R. China
| | - Qun-Ying Jiang
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education; Hangzhou Normal University; No 1378, Wenyi West Road, Science Park of HZNU Hangzhou P.R. China
| | - Xing-Feng Bai
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education; Hangzhou Normal University; No 1378, Wenyi West Road, Science Park of HZNU Hangzhou P.R. China
- State Key Laboratory for Oxo Synthesis and Selective Oxidation; Lanzhou Institute of Chemical Physics (CAS) and; University of the Chinese Academy of Sciences; P.R. China
| | - Zhifang Li
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education; Hangzhou Normal University; No 1378, Wenyi West Road, Science Park of HZNU Hangzhou P.R. China
| | - Zheng Xu
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education; Hangzhou Normal University; No 1378, Wenyi West Road, Science Park of HZNU Hangzhou P.R. China
| | - Li-Wen Xu
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education; Hangzhou Normal University; No 1378, Wenyi West Road, Science Park of HZNU Hangzhou P.R. China
- State Key Laboratory for Oxo Synthesis and Selective Oxidation; Lanzhou Institute of Chemical Physics (CAS) and; University of the Chinese Academy of Sciences; P.R. China
| |
Collapse
|
11
|
Panish RA, Chintala SR, Fox JM. A Mixed‐Ligand Chiral Rhodium(II) Catalyst Enables the Enantioselective Total Synthesis of Piperarborenine B. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201600766] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Robert A. Panish
- Department of Chemistry and Biochemistry University of Delaware Newark DE 19716 USA
| | | | - Joseph M. Fox
- Department of Chemistry and Biochemistry University of Delaware Newark DE 19716 USA
| |
Collapse
|
12
|
Emayavaramban B, Roy M, Sundararaju B. Iron-Catalyzed Allylic Amination Directly from Allylic Alcohols. Chemistry 2016; 22:3952-5. [PMID: 26812622 DOI: 10.1002/chem.201505214] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Indexed: 11/07/2022]
Abstract
Allylic amination, directly from alcohols, has been demonstrated without any Lewis acid activators using an efficient and regiospecific molecular iron catalyst. Various amines and alcohols were employed and the reaction proceeded through the oxidation/reduction (redox) pathway. A direct one-step synthesis of common drugs, such as cinnarizine and nafetifine, was exhibited from cinnamyl alcohol that produced water as side product.
Collapse
Affiliation(s)
- Balakumar Emayavaramban
- Fine Chemical Laboratory, Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, India
| | - Moumita Roy
- Fine Chemical Laboratory, Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, India
| | - Basker Sundararaju
- Fine Chemical Laboratory, Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, India.
| |
Collapse
|
13
|
Kita Y, Kavthe RD, Oda H, Mashima K. Asymmetric Allylic Alkylation of β-Ketoesters with Allylic Alcohols by a Nickel/Diphosphine Catalyst. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201508757] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yusuke Kita
- Department of Chemistry; Graduate School of Engineering Science; Osaka University, Toyonaka; Osaka 560-8531 Japan
| | - Rahul D. Kavthe
- Department of Chemistry; Graduate School of Engineering Science; Osaka University, Toyonaka; Osaka 560-8531 Japan
| | - Hiroaki Oda
- Department of Chemistry; Graduate School of Engineering Science; Osaka University, Toyonaka; Osaka 560-8531 Japan
| | - Kazushi Mashima
- Department of Chemistry; Graduate School of Engineering Science; Osaka University, Toyonaka; Osaka 560-8531 Japan
| |
Collapse
|
14
|
Kita Y, Kavthe RD, Oda H, Mashima K. Asymmetric Allylic Alkylation of β-Ketoesters with Allylic Alcohols by a Nickel/Diphosphine Catalyst. Angew Chem Int Ed Engl 2015; 55:1098-101. [PMID: 26637131 DOI: 10.1002/anie.201508757] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Indexed: 01/14/2023]
Abstract
Asymmetric allylic alkylation of β-ketoesters with allylic alcohols catalyzed by [Ni(cod)2]/(S)-H8-BINAP was found to be a superior synthetic protocol for constructing quaternary chiral centers at the α-position of β-ketoesters. The reaction proceeded in high yield and with high enantioselectivity using various β-ketoesters and allylic alcohols, without any additional activators. The versatility of this methodology for accessing useful and enantioenriched products was demonstrated.
Collapse
Affiliation(s)
- Yusuke Kita
- Department of Chemistry, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka, 560-8531, Japan
| | - Rahul D Kavthe
- Department of Chemistry, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka, 560-8531, Japan
| | - Hiroaki Oda
- Department of Chemistry, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka, 560-8531, Japan
| | - Kazushi Mashima
- Department of Chemistry, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka, 560-8531, Japan.
| |
Collapse
|
15
|
Zhou H, Zhang L, Xu C, Luo S. Chiral Primary Amine/Palladium Dual Catalysis for Asymmetric Allylic Alkylation of β-Ketocarbonyl Compounds with Allylic Alcohols. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201505946] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
16
|
Zhou H, Zhang L, Xu C, Luo S. Chiral Primary Amine/Palladium Dual Catalysis for Asymmetric Allylic Alkylation of β-Ketocarbonyl Compounds with Allylic Alcohols. Angew Chem Int Ed Engl 2015; 54:12645-8. [DOI: 10.1002/anie.201505946] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Indexed: 12/14/2022]
|
17
|
Zhang M, Watanabe K, Tsukamoto M, Shibuya R, Morimoto H, Ohshima T. A Short Scalable Route to (−)-α-Kainic Acid Using Pt-Catalyzed Direct Allylic Amination. Chemistry 2015; 21:3937-41. [DOI: 10.1002/chem.201406557] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Indexed: 01/11/2023]
|
18
|
Huo X, Yang G, Liu D, Liu Y, Gridnev ID, Zhang W. Palladium-Catalyzed Allylic Alkylation of Simple Ketones with Allylic Alcohols and Its Mechanistic Study. Angew Chem Int Ed Engl 2014; 53:6776-80. [DOI: 10.1002/anie.201403410] [Citation(s) in RCA: 137] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Indexed: 12/13/2022]
|
19
|
Huo X, Yang G, Liu D, Liu Y, Gridnev ID, Zhang W. Palladium-Catalyzed Allylic Alkylation of Simple Ketones with Allylic Alcohols and Its Mechanistic Study. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201403410] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|