1
|
Mertens RT, Gukathasan S, Arojojoye AS, Olelewe C, Awuah SG. Next Generation Gold Drugs and Probes: Chemistry and Biomedical Applications. Chem Rev 2023; 123:6612-6667. [PMID: 37071737 PMCID: PMC10317554 DOI: 10.1021/acs.chemrev.2c00649] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2023]
Abstract
The gold drugs, gold sodium thiomalate (Myocrisin), aurothioglucose (Solganal), and the orally administered auranofin (Ridaura), are utilized in modern medicine for the treatment of inflammatory arthritis including rheumatoid and juvenile arthritis; however, new gold agents have been slow to enter the clinic. Repurposing of auranofin in different disease indications such as cancer, parasitic, and microbial infections in the clinic has provided impetus for the development of new gold complexes for biomedical applications based on unique mechanistic insights differentiated from auranofin. Various chemical methods for the preparation of physiologically stable gold complexes and associated mechanisms have been explored in biomedicine such as therapeutics or chemical probes. In this Review, we discuss the chemistry of next generation gold drugs, which encompasses oxidation states, geometry, ligands, coordination, and organometallic compounds for infectious diseases, cancer, inflammation, and as tools for chemical biology via gold-protein interactions. We will focus on the development of gold agents in biomedicine within the past decade. The Review provides readers with an accessible overview of the utility, development, and mechanism of action of gold-based small molecules to establish context and basis for the thriving resurgence of gold in medicine.
Collapse
Affiliation(s)
- R Tyler Mertens
- Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Sailajah Gukathasan
- Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Adedamola S Arojojoye
- Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Chibuzor Olelewe
- Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Samuel G Awuah
- Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506, United States
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
- University of Kentucky Markey Cancer Center, Lexington, Kentucky 40536, United States
| |
Collapse
|
2
|
Moreno-Alcántar G, Picchetti P, Casini A. Gold Complexes in Anticancer Therapy: From New Design Principles to Particle-Based Delivery Systems. Angew Chem Int Ed Engl 2023; 62:e202218000. [PMID: 36847211 DOI: 10.1002/anie.202218000] [Citation(s) in RCA: 40] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/26/2023] [Accepted: 02/27/2023] [Indexed: 02/28/2023]
Abstract
The discovery of the medicinal properties of gold complexes has fuelled the design and synthesis of new anticancer metallodrugs, which have received special attention due to their unique modes of action. Current research in the development of gold compounds with therapeutic properties is predominantly focused on the molecular design of drug leads with superior pharmacological activities, e.g., by introducing targeting features. Moreover, intensive research aims at improving the physicochemical properties of gold compounds, such as chemical stability and solubility in the physiological environment. In this regard, the encapsulation of gold compounds in nanocarriers or their chemical grafting onto targeted delivery vectors could lead to new nanomedicines that eventually reach clinical applications. Herein, we provide an overview of the state-of-the-art progress of gold anticancer compounds, andmore importantly we thoroughly revise the development of nanoparticle-based delivery systems for gold chemotherapeutics.
Collapse
Affiliation(s)
- Guillermo Moreno-Alcántar
- Chair of Medicinal and Bioinorganic Chemistry, School of Natural Sciences, Department of Chemistry, Technical University of Munich (TUM), Lichtenbergstr. 4, 85748, Garching b. München, Germany
| | - Pierre Picchetti
- Karlsruhe Institute of Technology (KIT), Institute of Nanotechnology, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Angela Casini
- Chair of Medicinal and Bioinorganic Chemistry, School of Natural Sciences, Department of Chemistry, Technical University of Munich (TUM), Lichtenbergstr. 4, 85748, Garching b. München, Germany
| |
Collapse
|
3
|
Jiang J, Cao B, Chen Y, Luo H, Xue J, Xiong X, Zou T. Alkylgold(III) Complexes Undergo Unprecedented Photo-Induced β-Hydride Elimination and Reduction for Targeted Cancer Therapy. Angew Chem Int Ed Engl 2022; 61:e202201103. [PMID: 35165986 DOI: 10.1002/anie.202201103] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Indexed: 11/07/2022]
Abstract
Spatiotemporally controllable activation of prodrugs within tumors is highly desirable for cancer therapy to minimize toxic side effects. Herein we report that stable alkylgold(III) complexes can undergo unprecedented photo-induced β-hydride elimination, releasing alkyl ligands and forming gold(III)-hydride intermediates that could be quickly converted into bioactive [AuIII -S] adducts; meanwhile, the remaining alkylgold(III) complexes can photo-catalytically reduce [AuIII -S] into more bioactive AuI species. Such photo-reactivities make it possible to functionalize gold complexes on the auxiliary alkyl ligands without attenuating the metal-biomacromolecule interactions. As a result, the gold(III) complexes containing glucose-functionalized alkyl ligands displayed efficient and tumor-selective uptake; notably, after one- or two-photon activation, the complexes exhibited high thioredoxin reductase (TrxR) inhibition, potent cytotoxicity, and strong antiangiogenesis and antitumor activities in vivo.
Collapse
Affiliation(s)
- Jia Jiang
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Bei Cao
- Warshel Institute for Computational Biology, and General Education Division, The Chinese University of Hong Kong, Shenzhen, 518172, P. R. China
| | - Yuting Chen
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Hejiang Luo
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Jiaying Xue
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Xiaolin Xiong
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Taotao Zou
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| |
Collapse
|
4
|
Jiang J, Cao B, Chen Y, Luo H, Xue J, Xiong X, Zou T. Alkylgold(III) Complexes Undergo Unprecedented Photo‐Induced β‐Hydride Elimination and Reduction for Targeted Cancer Therapy. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202201103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Jia Jiang
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery School of Pharmaceutical Sciences Sun Yat-Sen University Guangzhou 510006 P. R. China
| | - Bei Cao
- Warshel Institute for Computational Biology and General Education Division The Chinese University of Hong Kong Shenzhen 518172 P. R. China
| | - Yuting Chen
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery School of Pharmaceutical Sciences Sun Yat-Sen University Guangzhou 510006 P. R. China
| | - Hejiang Luo
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery School of Pharmaceutical Sciences Sun Yat-Sen University Guangzhou 510006 P. R. China
| | - Jiaying Xue
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery School of Pharmaceutical Sciences Sun Yat-Sen University Guangzhou 510006 P. R. China
| | - Xiaolin Xiong
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery School of Pharmaceutical Sciences Sun Yat-Sen University Guangzhou 510006 P. R. China
| | - Taotao Zou
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery School of Pharmaceutical Sciences Sun Yat-Sen University Guangzhou 510006 P. R. China
| |
Collapse
|
5
|
Long Y, Cao B, Xiong X, Chan ASC, Sun RW, Zou T. Bioorthogonal Activation of Dual Catalytic and Anti‐Cancer Activities of Organogold(I) Complexes in Living Systems. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202013366] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Yan Long
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation School of Pharmaceutical Sciences Sun Yat-Sen University Guangzhou 510006 P. R. China
| | - Bei Cao
- Warshel Institute for Computational Biology General Education Division The Chinese University of Hong Kong Shenzhen 518172 P. R. China
| | - Xiaolin Xiong
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation School of Pharmaceutical Sciences Sun Yat-Sen University Guangzhou 510006 P. R. China
| | - Albert S. C. Chan
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation School of Pharmaceutical Sciences Sun Yat-Sen University Guangzhou 510006 P. R. China
| | | | - Taotao Zou
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation School of Pharmaceutical Sciences Sun Yat-Sen University Guangzhou 510006 P. R. China
- State Key Laboratory of Coordination Chemistry Nanjing University Nanjing 210093 P. R. China
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources Guangxi Normal University Guilin 541004 P. R. China
| |
Collapse
|
6
|
Long Y, Cao B, Xiong X, Chan ASC, Sun RW, Zou T. Bioorthogonal Activation of Dual Catalytic and Anti‐Cancer Activities of Organogold(I) Complexes in Living Systems. Angew Chem Int Ed Engl 2020; 60:4133-4141. [DOI: 10.1002/anie.202013366] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 11/03/2020] [Indexed: 12/12/2022]
Affiliation(s)
- Yan Long
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation School of Pharmaceutical Sciences Sun Yat-Sen University Guangzhou 510006 P. R. China
| | - Bei Cao
- Warshel Institute for Computational Biology General Education Division The Chinese University of Hong Kong Shenzhen 518172 P. R. China
| | - Xiaolin Xiong
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation School of Pharmaceutical Sciences Sun Yat-Sen University Guangzhou 510006 P. R. China
| | - Albert S. C. Chan
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation School of Pharmaceutical Sciences Sun Yat-Sen University Guangzhou 510006 P. R. China
| | | | - Taotao Zou
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation School of Pharmaceutical Sciences Sun Yat-Sen University Guangzhou 510006 P. R. China
- State Key Laboratory of Coordination Chemistry Nanjing University Nanjing 210093 P. R. China
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources Guangxi Normal University Guilin 541004 P. R. China
| |
Collapse
|
7
|
Jakob CHG, Dominelli B, Schlagintweit JF, Fischer PJ, Schuderer F, Reich RM, Marques F, Correia JDG, Kühn FE. Improved Antiproliferative Activity and Fluorescence of a Dinuclear Gold(I) Bisimidazolylidene Complex via Anthracene-Modification. Chem Asian J 2020; 15:4275-4279. [PMID: 33405335 PMCID: PMC7756789 DOI: 10.1002/asia.202001104] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/12/2020] [Indexed: 12/26/2022]
Abstract
A straightforward modification route to obtain mono- and di-substituted anthroyl ester bridge functionalized dinuclear Au(I) bis-N-heterocyclic carbene complexes is presented. The functionalization can be achieved starting from a hydroxyl-functionalized ligand precursor followed by transmetallation of the corresponding Ag complex or via esterification of the hydroxyl-functionalized gold complex. The compounds are characterized by NMR-spectroscopy, ESI-MS, elemental analysis and SC-XRD. The mono-ester Au complex shows quantum yields around 18%. In contrast, the corresponding syn-di-ester Au complex, exhibits significantly lower quantum yields of around 8%. Due to insufficient water solubility of the di-ester, only the mono-ester complex has been tested regarding its antiproliferative activity against HeLa- (cervix) and MCF-7- (breast) cancer cell lines and a healthy fibroblast cell line (V79). IC50 values of 7.26 μM in the HeLa cell line and 7.92 μM in the MCF-7 cell line along with selectivity indices of 8.8 (HeLa) and 8.0 (MCF-7) are obtained. These selectivity indices are significantly higher than those obtained for the reference drugs cisplatin or auranofin.
Collapse
Affiliation(s)
- Christian H. G. Jakob
- Department of Chemistry and Catalysis Research Center, Molecular CatalysisTechnische Universität MünchenLichtenbergstraße 485748Garching bei MünchenGermany
| | - Bruno Dominelli
- Department of Chemistry and Catalysis Research Center, Molecular CatalysisTechnische Universität MünchenLichtenbergstraße 485748Garching bei MünchenGermany
| | - Jonas F. Schlagintweit
- Department of Chemistry and Catalysis Research Center, Molecular CatalysisTechnische Universität MünchenLichtenbergstraße 485748Garching bei MünchenGermany
| | - Pauline J. Fischer
- Department of Chemistry and Catalysis Research Center, Molecular CatalysisTechnische Universität MünchenLichtenbergstraße 485748Garching bei MünchenGermany
| | - Franziska Schuderer
- Department of Chemistry and Catalysis Research Center, Molecular CatalysisTechnische Universität MünchenLichtenbergstraße 485748Garching bei MünchenGermany
| | - Robert M. Reich
- Department of Chemistry and Catalysis Research Center, Molecular CatalysisTechnische Universität MünchenLichtenbergstraße 485748Garching bei MünchenGermany
| | - Fernanda Marques
- Centro de Ciências e Tecnologias Nucleares and Departamento de Engenharia e Ciências Nucleares, Instituto Superior TécnicoUniversidade de LisboaCampus Tecnológico e Nuclear, Estrada Nacional N° 10 (km 139,7)2695-066Bobadela LRSPortugal
| | - João D. G. Correia
- Centro de Ciências e Tecnologias Nucleares and Departamento de Engenharia e Ciências Nucleares, Instituto Superior TécnicoUniversidade de LisboaCampus Tecnológico e Nuclear, Estrada Nacional N° 10 (km 139,7)2695-066Bobadela LRSPortugal
| | - Fritz E. Kühn
- Department of Chemistry and Catalysis Research Center, Molecular CatalysisTechnische Universität MünchenLichtenbergstraße 485748Garching bei MünchenGermany
| |
Collapse
|
8
|
Stenger‐Smith JR, Mascharak PK. Gold Drugs with {Au(PPh
3
)}
+
Moiety: Advantages and Medicinal Applications. ChemMedChem 2020; 15:2136-2145. [DOI: 10.1002/cmdc.202000608] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/21/2020] [Indexed: 12/26/2022]
Affiliation(s)
- Jenny R. Stenger‐Smith
- Department of Chemistry and Biochemistry University of California, Santa Cruz 1156 High Street Santa Cruz CA 95064 USA
| | - Pradip K. Mascharak
- Department of Chemistry and Biochemistry University of California, Santa Cruz 1156 High Street Santa Cruz CA 95064 USA
| |
Collapse
|
9
|
Guarra F, Terenzi A, Pirker C, Passannante R, Baier D, Zangrando E, Gómez‐Vallejo V, Biver T, Gabbiani C, Berger W, Llop J, Salassa L. 124 I Radiolabeling of a Au III -NHC Complex for In Vivo Biodistribution Studies. Angew Chem Int Ed Engl 2020; 59:17130-17136. [PMID: 32633820 PMCID: PMC7540067 DOI: 10.1002/anie.202008046] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Indexed: 12/02/2022]
Abstract
AuIII complexes with N-heterocyclic carbene (NHC) ligands have shown remarkable potential as anticancer agents, yet their fate in vivo has not been thoroughly examined and understood. Reported herein is the synthesis of new AuIII -NHC complexes by direct oxidation with radioactive [124 I]I2 as a valuable strategy to monitor the in vivo biodistribution of this class of compounds using positron emission tomography (PET). While in vitro analyses provide direct evidence for the importance of AuIII -to-AuI reduction to achieve full anticancer activity, in vivo studies reveal that a fraction of the AuIII -NHC prodrug is not immediately reduced after administration but able to reach the major organs before metabolic activation.
Collapse
Affiliation(s)
- Federica Guarra
- Department of Chemistry and Industrial ChemistryUniversity of PisaVia G. Moruzzi 1356124PisaItaly
| | - Alessio Terenzi
- Donostia International Physics CenterPaseo M. Lardizabal 420018DonostiaSpain
- Department of Biological, Chemical and Pharmaceutical Sciences and TechnologiesUniversity of PalermoViale delle Scienze, Ed. 1790128PalermoItaly
| | - Christine Pirker
- Department of Medicine IInstitute of Cancer Research and Comprehensive Cancer CenterMedical University ViennaBorschkegasse 8a1090ViennaAustria
| | - Rossana Passannante
- CIC biomaGUNEBasque Research and Technology Alliance (BRTA)Paseo de Miramón 18220014DonostiaSpain
| | - Dina Baier
- Department of Medicine IInstitute of Cancer Research and Comprehensive Cancer CenterMedical University ViennaBorschkegasse 8a1090ViennaAustria
- Institute of Inorganic ChemistryFaculty of Chemistry University of ViennaWaehringerstrasse 421090ViennaAustria
| | - Ennio Zangrando
- Department of Chemical and Pharmaceutical SciencesUniversity of Triestevia Giorgieri 134127TriesteItaly
| | - Vanessa Gómez‐Vallejo
- CIC biomaGUNEBasque Research and Technology Alliance (BRTA)Paseo de Miramón 18220014DonostiaSpain
| | - Tarita Biver
- Department of Chemistry and Industrial ChemistryUniversity of PisaVia G. Moruzzi 1356124PisaItaly
- Department of PharmacyUniversity of Pisavia Bonanno 656126PisaItaly
| | - Chiara Gabbiani
- Department of Chemistry and Industrial ChemistryUniversity of PisaVia G. Moruzzi 1356124PisaItaly
| | - Walter Berger
- Department of Medicine IInstitute of Cancer Research and Comprehensive Cancer CenterMedical University ViennaBorschkegasse 8a1090ViennaAustria
| | - Jordi Llop
- CIC biomaGUNEBasque Research and Technology Alliance (BRTA)Paseo de Miramón 18220014DonostiaSpain
| | - Luca Salassa
- Donostia International Physics CenterPaseo M. Lardizabal 420018DonostiaSpain
- Kimika FakultateaEuskal Herriko UnibertsitateaUPV/EHU20080DonostiaSpain
- IkerbasqueBasque Foundation for Science48013BilbaoSpain
| |
Collapse
|
10
|
Jakob CHG, Dominelli B, Hahn EM, Berghausen TO, Pinheiro T, Marques F, Reich RM, Correia JDG, Kühn FE. Antiproliferative Activity of Functionalized Histidine-derived Au(I) bis-NHC Complexes for Bioconjugation. Chem Asian J 2020; 15:2754-2762. [PMID: 32592289 PMCID: PMC7689731 DOI: 10.1002/asia.202000620] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 06/20/2020] [Indexed: 12/23/2022]
Abstract
A series of histidine derived Au(I) bis-NHC complexes bearing different ester, amide and carboxylic acid functionalities as well as wingtip substituents is synthesized and characterized. The stability in aqueous media, in vitro cytotoxicity in a set of cancer cell lines (MCF7, PC3 and A2780/A2780cisR) along with the cellular uptake are evaluated. Stability tests suggest hydrolysis of the ester within 8 h, which might lead to deactivation. Furthermore, the bis-NHC system shows a sufficient stability against cysteine and the thiol containing peptide GSH. The benzyl ester and amide show the highest activity comparable to the benchmark compound cisplatin, with the ester only displaying a slightly lower cytotoxicity than the amide. A cellular uptake study revealed that the benzyl ester and the amide could have different intracellular distribution profiles but both complexes induce perturbations of the cellular physiological processes. The simple modifiability and high stability of the complexes provides a promising system for upcoming post modifications to enable targeted cancer therapy.
Collapse
Affiliation(s)
- Christian H. G. Jakob
- Molecular CatalysisCatalysis Research Center and Department of Chemistry Department Technische Universität MünchenLichtenbergstrasse 4D-85748Garching bei MünchenGermany
| | - Bruno Dominelli
- Molecular CatalysisCatalysis Research Center and Department of Chemistry Department Technische Universität MünchenLichtenbergstrasse 4D-85748Garching bei MünchenGermany
| | - Eva M. Hahn
- Molecular CatalysisCatalysis Research Center and Department of Chemistry Department Technische Universität MünchenLichtenbergstrasse 4D-85748Garching bei MünchenGermany
| | - Tobias O. Berghausen
- Molecular CatalysisCatalysis Research Center and Department of Chemistry Department Technische Universität MünchenLichtenbergstrasse 4D-85748Garching bei MünchenGermany
| | - Teresa Pinheiro
- Institute for Bioengineering and BiosciencesDepartamento de Engenharia e Ciências NuclearesInstituto Superior TécnicoUniversidade de LisboaAv. Rovisco Pais 11049-001LisboaPortugal
| | - Fernanda Marques
- Centro de Ciências e Tecnologias NuclearesDepartamento de Engenharia e Ciências NuclearesInstituto Superior TécnicoUniversidade de LisboaCTN, Estrada Nacional 10 (km 139,7)2695-066Bobadela LRSPortugal
| | - Robert M. Reich
- Molecular CatalysisCatalysis Research Center and Department of Chemistry Department Technische Universität MünchenLichtenbergstrasse 4D-85748Garching bei MünchenGermany
| | - João D. G. Correia
- Centro de Ciências e Tecnologias NuclearesDepartamento de Engenharia e Ciências NuclearesInstituto Superior TécnicoUniversidade de LisboaCTN, Estrada Nacional 10 (km 139,7)2695-066Bobadela LRSPortugal
| | - Fritz E. Kühn
- Molecular CatalysisCatalysis Research Center and Department of Chemistry Department Technische Universität MünchenLichtenbergstrasse 4D-85748Garching bei MünchenGermany
| |
Collapse
|
11
|
Guarra F, Terenzi A, Pirker C, Passannante R, Baier D, Zangrando E, Gómez‐Vallejo V, Biver T, Gabbiani C, Berger W, Llop J, Salassa L. 124
I Radiolabeling of a Au
III
‐NHC Complex for In Vivo Biodistribution Studies. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202008046] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Federica Guarra
- Department of Chemistry and Industrial Chemistry University of Pisa Via G. Moruzzi 13 56124 Pisa Italy
| | - Alessio Terenzi
- Donostia International Physics Center Paseo M. Lardizabal 4 20018 Donostia Spain
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies University of Palermo Viale delle Scienze, Ed. 17 90128 Palermo Italy
| | - Christine Pirker
- Department of Medicine I Institute of Cancer Research and Comprehensive Cancer Center Medical University Vienna Borschkegasse 8a 1090 Vienna Austria
| | - Rossana Passannante
- CIC biomaGUNE Basque Research and Technology Alliance (BRTA) Paseo de Miramón 182 20014 Donostia Spain
| | - Dina Baier
- Department of Medicine I Institute of Cancer Research and Comprehensive Cancer Center Medical University Vienna Borschkegasse 8a 1090 Vienna Austria
- Institute of Inorganic Chemistry Faculty of Chemistry University of Vienna Waehringerstrasse 42 1090 Vienna Austria
| | - Ennio Zangrando
- Department of Chemical and Pharmaceutical Sciences University of Trieste via Giorgieri 1 34127 Trieste Italy
| | - Vanessa Gómez‐Vallejo
- CIC biomaGUNE Basque Research and Technology Alliance (BRTA) Paseo de Miramón 182 20014 Donostia Spain
| | - Tarita Biver
- Department of Chemistry and Industrial Chemistry University of Pisa Via G. Moruzzi 13 56124 Pisa Italy
- Department of Pharmacy University of Pisa via Bonanno 6 56126 Pisa Italy
| | - Chiara Gabbiani
- Department of Chemistry and Industrial Chemistry University of Pisa Via G. Moruzzi 13 56124 Pisa Italy
| | - Walter Berger
- Department of Medicine I Institute of Cancer Research and Comprehensive Cancer Center Medical University Vienna Borschkegasse 8a 1090 Vienna Austria
| | - Jordi Llop
- CIC biomaGUNE Basque Research and Technology Alliance (BRTA) Paseo de Miramón 182 20014 Donostia Spain
| | - Luca Salassa
- Donostia International Physics Center Paseo M. Lardizabal 4 20018 Donostia Spain
- Kimika Fakultatea Euskal Herriko Unibertsitatea UPV/EHU 20080 Donostia Spain
- Ikerbasque Basque Foundation for Science 48013 Bilbao Spain
| |
Collapse
|
12
|
Jakob CHG, Dominelli B, Rieb J, Jandl C, Pöthig A, Reich RM, Correia JDG, Kühn FE. Dinuclear Gold(I) Complexes Bearing N,N'-Allyl-Bridged Bisimidazolylidene Ligands. Chem Asian J 2020; 15:1848-1851. [PMID: 32348033 PMCID: PMC7687270 DOI: 10.1002/asia.202000453] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 04/28/2020] [Indexed: 11/30/2022]
Abstract
A novel N,N'-allyl-bridged bisimidazolium salt and a novel dinuclear Ag(I) and a Au(I) NHC complex are reported. Both metallacyclic complexes have a twisted structural shape due to the rigid allylic system and form two different isomers relating to the position of the double bonds. The allyl-group shows photoisomerisation, but no reactivity towards bases for the additional coordination of Pd(II).
Collapse
Affiliation(s)
- Christian H. G. Jakob
- Catalysis Research CenterMolecular CatalysisTechnische Universität MünchenErnst-Otto-Fischer-Straße 1D-85748Garching bei MünchenGermany
| | - Bruno Dominelli
- Catalysis Research CenterMolecular CatalysisTechnische Universität MünchenErnst-Otto-Fischer-Straße 1D-85748Garching bei MünchenGermany
| | - Julia Rieb
- Catalysis Research CenterMolecular CatalysisTechnische Universität MünchenErnst-Otto-Fischer-Straße 1D-85748Garching bei MünchenGermany
| | - Christian Jandl
- Catalysis Research CenterMolecular CatalysisTechnische Universität MünchenErnst-Otto-Fischer-Straße 1D-85748Garching bei MünchenGermany
| | - Alexander Pöthig
- Catalysis Research CenterMolecular CatalysisTechnische Universität MünchenErnst-Otto-Fischer-Straße 1D-85748Garching bei MünchenGermany
| | - Robert M. Reich
- Catalysis Research CenterMolecular CatalysisTechnische Universität MünchenErnst-Otto-Fischer-Straße 1D-85748Garching bei MünchenGermany
| | - João D. G. Correia
- Centro de Ciências e Tecnologias Nucleares and Departamento de Engenharia e Ciências NuclearesInstituto Superior TécnicoUniversidade de LisboaCampus Tecnológico e NuclearEstrada Nacional N° 10 (km 139,7)2695-066Bobadela LRSPortugal
| | - Fritz E. Kühn
- Catalysis Research CenterMolecular CatalysisTechnische Universität MünchenErnst-Otto-Fischer-Straße 1D-85748Garching bei MünchenGermany
| |
Collapse
|
13
|
Luo H, Cao B, Chan ASC, Sun RW, Zou T. Cyclometalated Gold(III)‐Hydride Complexes Exhibit Visible Light‐Induced Thiol Reactivity and Act as Potent Photo‐Activated Anti‐Cancer Agents. Angew Chem Int Ed Engl 2020; 59:11046-11052. [DOI: 10.1002/anie.202000528] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 02/14/2020] [Indexed: 12/22/2022]
Affiliation(s)
- Hejiang Luo
- Guangdong Key Laboratory of Chiral Molecule and Drug DiscoverySchool of Pharmaceutical SciencesSun Yat-Sen University Guangzhou 510006 P. R. China
| | - Bei Cao
- Warshel Institute for Computational Biology, and General Education DivisionThe Chinese University of Hong Kong Shenzhen 518172 P. R. China
| | - Albert S. C. Chan
- Guangdong Key Laboratory of Chiral Molecule and Drug DiscoverySchool of Pharmaceutical SciencesSun Yat-Sen University Guangzhou 510006 P. R. China
| | | | - Taotao Zou
- Guangdong Key Laboratory of Chiral Molecule and Drug DiscoverySchool of Pharmaceutical SciencesSun Yat-Sen University Guangzhou 510006 P. R. China
- State Key Laboratory of Coordination ChemistryNanjing University Nanjing 210093 P. R. China
| |
Collapse
|
14
|
Luo H, Cao B, Chan ASC, Sun RW, Zou T. Cyclometalated Gold(III)‐Hydride Complexes Exhibit Visible Light‐Induced Thiol Reactivity and Act as Potent Photo‐Activated Anti‐Cancer Agents. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202000528] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Hejiang Luo
- Guangdong Key Laboratory of Chiral Molecule and Drug DiscoverySchool of Pharmaceutical SciencesSun Yat-Sen University Guangzhou 510006 P. R. China
| | - Bei Cao
- Warshel Institute for Computational Biology, and General Education DivisionThe Chinese University of Hong Kong Shenzhen 518172 P. R. China
| | - Albert S. C. Chan
- Guangdong Key Laboratory of Chiral Molecule and Drug DiscoverySchool of Pharmaceutical SciencesSun Yat-Sen University Guangzhou 510006 P. R. China
| | | | - Taotao Zou
- Guangdong Key Laboratory of Chiral Molecule and Drug DiscoverySchool of Pharmaceutical SciencesSun Yat-Sen University Guangzhou 510006 P. R. China
- State Key Laboratory of Coordination ChemistryNanjing University Nanjing 210093 P. R. China
| |
Collapse
|
15
|
Ingner FJL, Schmitt A, Orthaber A, Gates PJ, Pilarski LT. Mild and Efficient Synthesis of Diverse Organo-Au I -L Complexes in Green Solvents. CHEMSUSCHEM 2020; 13:2032-2037. [PMID: 31951303 PMCID: PMC7277043 DOI: 10.1002/cssc.201903415] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 01/15/2020] [Indexed: 06/10/2023]
Abstract
An exceptionally mild and efficient method was developed for the preparation of (hetero)aryl-AuI -L complexes using ethanol or water as the reaction medium at room temperature and Ar-B(triol)K boronates as the transmetalation partner. The reaction does not need an exogeneous base or other additives, and quantitative yields can be achieved through a simple filtration as the only required purification method, which obviates considerable waste associated with alternative workup methods. A broad reaction scope was demonstrated with respect to both the L and (hetero)aryl ligands on product Au complexes. Despite the polar reaction medium, large polycyclic aromatic hydrocarbon units can be incorporated on the Au complexes in very good to excellent yields. The approach was demonstrated for the chemoselective manipulation of orthogonally protected aryl boronates to afford a new class of N-heterocyclic carbene-Au-aryl complexes. A mechanistic rationale was proposed.
Collapse
Affiliation(s)
| | | | - Andreas Orthaber
- Department of Chemistry—ÅngströmUppsala UniversityBOX 52375-120UppsalaSweden
| | - Paul J. Gates
- School of ChemistryUniversity of BristolCantock's Close, CliftonBristolBS8 1TSUK
| | | |
Collapse
|
16
|
Wang K, Zhu C, He Y, Zhang Z, Zhou W, Muhammad N, Guo Y, Wang X, Guo Z. Restraining Cancer Cells by Dual Metabolic Inhibition with a Mitochondrion‐Targeted Platinum(II) Complex. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201900387] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Kun Wang
- State Key Laboratory of Coordination Chemistry School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 P. R. China
| | - Chengcheng Zhu
- State Key Laboratory of Coordination Chemistry School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 P. R. China
| | - Yafeng He
- State Key Laboratory of Coordination Chemistry School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 P. R. China
| | - Zhenqin Zhang
- State Key Laboratory of Coordination Chemistry School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 P. R. China
| | - Wen Zhou
- State Key Laboratory of Coordination Chemistry School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 P. R. China
| | - Nafees Muhammad
- State Key Laboratory of Coordination Chemistry School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 P. R. China
| | - Yan Guo
- State Key Laboratory of Coordination Chemistry School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 P. R. China
| | - Xiaoyong Wang
- State Key Laboratory of Pharmaceutical Biotechnology School of Life Sciences Nanjing University Nanjing 210023 P. R. China
| | - Zijian Guo
- State Key Laboratory of Coordination Chemistry School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 P. R. China
| |
Collapse
|
17
|
Wang K, Zhu C, He Y, Zhang Z, Zhou W, Muhammad N, Guo Y, Wang X, Guo Z. Restraining Cancer Cells by Dual Metabolic Inhibition with a Mitochondrion‐Targeted Platinum(II) Complex. Angew Chem Int Ed Engl 2019; 58:4638-4643. [DOI: 10.1002/anie.201900387] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Indexed: 12/13/2022]
Affiliation(s)
- Kun Wang
- State Key Laboratory of Coordination Chemistry School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 P. R. China
| | - Chengcheng Zhu
- State Key Laboratory of Coordination Chemistry School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 P. R. China
| | - Yafeng He
- State Key Laboratory of Coordination Chemistry School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 P. R. China
| | - Zhenqin Zhang
- State Key Laboratory of Coordination Chemistry School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 P. R. China
| | - Wen Zhou
- State Key Laboratory of Coordination Chemistry School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 P. R. China
| | - Nafees Muhammad
- State Key Laboratory of Coordination Chemistry School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 P. R. China
| | - Yan Guo
- State Key Laboratory of Coordination Chemistry School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 P. R. China
| | - Xiaoyong Wang
- State Key Laboratory of Pharmaceutical Biotechnology School of Life Sciences Nanjing University Nanjing 210023 P. R. China
| | - Zijian Guo
- State Key Laboratory of Coordination Chemistry School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 P. R. China
| |
Collapse
|
18
|
Laws K, Suntharalingam K. The Next Generation of Anticancer Metallopharmaceuticals: Cancer Stem Cell-Active Inorganics. Chembiochem 2018; 19:2246-2253. [PMID: 30109911 DOI: 10.1002/cbic.201800358] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Indexed: 12/17/2022]
Abstract
Cancer stem cells (CSCs) are heavily linked to fatal incidences of cancer relapse and metastasis. Conventional cancer therapies such as surgery, chemotherapy and radiation are largely futile against CSCs. Therefore, highly original approaches are needed to overcome CSCs and to provide durable, long-term clinical outcomes. Many academia- and pharmaceutical-led studies aimed at developing chemical or biological anti-CSC agents are ongoing; however, the application of inorganic compounds is rare. In this minireview, we discuss how the chemical diversity and versatility offered by metals has been harnessed to develop an unprecedented, emerging class of metallopharmaceuticals: CSC-active inorganics. A detailed account of their mechanism(s) of action is provided, and possible future directions for exploration are also put forward.
Collapse
Affiliation(s)
- Kristine Laws
- Department of Chemistry, King's College London, Trinity Street, London, SE1 1DB, UK
| | | |
Collapse
|
19
|
Zhao Z, Gao P, You Y, Chen T. Cancer-Targeting Functionalization of Selenium-Containing Ruthenium Conjugate with Tumor Microenvironment-Responsive Property to Enhance Theranostic Effects. Chemistry 2018; 24:3289-3298. [PMID: 29288592 DOI: 10.1002/chem.201705561] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Indexed: 12/20/2022]
Abstract
A mutifunctional ruthenium-based conjugate Ru-BSe was designed and synthesized. The Ru complex with favorable bioimaging function was covalently linked with a cancer-targeted molecule that could be effectively internalized by the tumor to realize enhanced theranostic effects. The pH-response of the Ru conjugate in tumor acidic microenvironment causes ligand substitution and release of therapeutic complex. This activated complex remains inert to the reducing biomolecule-glutathione and terminally locates in mitochondria, in which it triggers oxidative stress, and activates intrinsic apoptosis. Real-time monitoring reveals that this Ru conjugate could selectively accumulate in tumor tissue in vivo, which significantly suppresses tumor progression and alleviate the damage to normal organs, realizing the precise cancer theranosis.
Collapse
Affiliation(s)
- Zhennan Zhao
- Department of Chemistry, Jinan University, Guangzhou, 510632, P.R. China
| | - Pan Gao
- Department of Chemistry, Jinan University, Guangzhou, 510632, P.R. China
| | - Yuanyuan You
- Department of Chemistry, Jinan University, Guangzhou, 510632, P.R. China
| | - Tianfeng Chen
- Department of Chemistry, Jinan University, Guangzhou, 510632, P.R. China
| |
Collapse
|
20
|
Longevial JF, El Cheikh K, Aggad D, Lebrun A, van der Lee A, Tielens F, Clément S, Morère A, Garcia M, Gary-Bobo M, Richeter S. Porphyrins Conjugated with Peripheral Thiolato Gold(I) Complexes for Enhanced Photodynamic Therapy. Chemistry 2017; 23:14017-14026. [DOI: 10.1002/chem.201702975] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Indexed: 01/12/2023]
Affiliation(s)
- Jean-François Longevial
- Institut Charles Gerhardt Montpellier, UMR 5253 CNRS-ENSCM-UM, CC 1701; Université de Montpellier; Place Eugène Bataillon 34095 Montpellier Cedex 05 France
| | - Khaled El Cheikh
- Institut des Biomolécules Max Mousseron, UMR 5247 CNRS-ENSCM-UM; Faculté de Pharmacie; 15, Avenue Charles Flahault 34093 Montpellier Cedex 05 France
| | - Dina Aggad
- Institut des Biomolécules Max Mousseron, UMR 5247 CNRS-ENSCM-UM; Faculté de Pharmacie; 15, Avenue Charles Flahault 34093 Montpellier Cedex 05 France
| | - Aurélien Lebrun
- Laboratoire de Mesures Physiques; Université de Montpellier; Place Eugène Bataillon 34095 Montpellier France
| | - Arie van der Lee
- Institut Européen des Membranes; UMR 5635 CNRS-ENSCM-UM; Place Eugène Bataillon 34095 Montpellier France
| | - Frederik Tielens
- Sorbonne Université, UPMC Université Paris 06, UMR 7574; Laboratoire Chimie de la Matière Condensée de Paris; Collège de France; 11 Place Berthelot 75023 Paris France
| | - Sébastien Clément
- Institut Charles Gerhardt Montpellier, UMR 5253 CNRS-ENSCM-UM, CC 1701; Université de Montpellier; Place Eugène Bataillon 34095 Montpellier Cedex 05 France
| | - Alain Morère
- Institut des Biomolécules Max Mousseron, UMR 5247 CNRS-ENSCM-UM; Faculté de Pharmacie; 15, Avenue Charles Flahault 34093 Montpellier Cedex 05 France
| | - Marcel Garcia
- Institut des Biomolécules Max Mousseron, UMR 5247 CNRS-ENSCM-UM; Faculté de Pharmacie; 15, Avenue Charles Flahault 34093 Montpellier Cedex 05 France
| | - Magali Gary-Bobo
- Institut des Biomolécules Max Mousseron, UMR 5247 CNRS-ENSCM-UM; Faculté de Pharmacie; 15, Avenue Charles Flahault 34093 Montpellier Cedex 05 France
| | - Sébastien Richeter
- Institut Charles Gerhardt Montpellier, UMR 5253 CNRS-ENSCM-UM, CC 1701; Université de Montpellier; Place Eugène Bataillon 34095 Montpellier Cedex 05 France
| |
Collapse
|
21
|
Fung SK, Zou T, Cao B, Lee PY, Fung YME, Hu D, Lok CN, Che CM. Cyclometalated Gold(III) Complexes Containing N-Heterocyclic Carbene Ligands Engage Multiple Anti-Cancer Molecular Targets. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201612583] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Sin Ki Fung
- State Key Laboratory of Synthetic Chemistry; Institute of Molecular Functional Materials; Chemical Biology Centre and Department of Chemistry; The University of Hong Kong; Pokfulam Road Hong Kong China
| | - Taotao Zou
- State Key Laboratory of Synthetic Chemistry; Institute of Molecular Functional Materials; Chemical Biology Centre and Department of Chemistry; The University of Hong Kong; Pokfulam Road Hong Kong China
| | - Bei Cao
- State Key Laboratory of Synthetic Chemistry; Institute of Molecular Functional Materials; Chemical Biology Centre and Department of Chemistry; The University of Hong Kong; Pokfulam Road Hong Kong China
| | - Pui-Yan Lee
- State Key Laboratory of Synthetic Chemistry; Institute of Molecular Functional Materials; Chemical Biology Centre and Department of Chemistry; The University of Hong Kong; Pokfulam Road Hong Kong China
| | - Yi Man Eva Fung
- State Key Laboratory of Synthetic Chemistry; Institute of Molecular Functional Materials; Chemical Biology Centre and Department of Chemistry; The University of Hong Kong; Pokfulam Road Hong Kong China
| | - Di Hu
- State Key Laboratory of Synthetic Chemistry; Institute of Molecular Functional Materials; Chemical Biology Centre and Department of Chemistry; The University of Hong Kong; Pokfulam Road Hong Kong China
| | - Chun-Nam Lok
- State Key Laboratory of Synthetic Chemistry; Institute of Molecular Functional Materials; Chemical Biology Centre and Department of Chemistry; The University of Hong Kong; Pokfulam Road Hong Kong China
| | - Chi-Ming Che
- State Key Laboratory of Synthetic Chemistry; Institute of Molecular Functional Materials; Chemical Biology Centre and Department of Chemistry; The University of Hong Kong; Pokfulam Road Hong Kong China
- HKU Shenzhen Institute of Research and Innovation; Shenzhen 518053 China
| |
Collapse
|
22
|
Fung SK, Zou T, Cao B, Lee PY, Fung YME, Hu D, Lok CN, Che CM. Cyclometalated Gold(III) Complexes Containing N-Heterocyclic Carbene Ligands Engage Multiple Anti-Cancer Molecular Targets. Angew Chem Int Ed Engl 2017; 56:3892-3896. [PMID: 28247451 DOI: 10.1002/anie.201612583] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Indexed: 01/03/2023]
Abstract
Metal N-heterocyclic carbene (NHC) complexes are a promising class of anti-cancer agents displaying potent in vitro and in vivo activities. Taking a multi-faceted approach employing two clickable photoaffinity probes, herein we report the identification of multiple molecular targets for anti-cancer active pincer gold(III) NHC complexes. These complexes display potent and selective cytotoxicity against cultured cancer cells and in vivo anti-tumor activities in mice bearing xenografts of human cervical and lung cancers. Our experiments revealed the specific engagement of the gold(III) complexes with multiple cellular targets, including HSP60, vimentin, nucleophosmin, and YB-1, accompanied by expected downstream mechanisms of action. Additionally, PtII and PdII analogues can also bind the cellular proteins targeted by the gold(III) complexes, uncovering a distinct pincer cyclometalated metal-NHC scaffold in the design of anti-cancer metal medicines with multiple molecular targets.
Collapse
Affiliation(s)
- Sin Ki Fung
- State Key Laboratory of Synthetic Chemistry, Institute of Molecular Functional Materials, Chemical Biology Centre and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Taotao Zou
- State Key Laboratory of Synthetic Chemistry, Institute of Molecular Functional Materials, Chemical Biology Centre and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Bei Cao
- State Key Laboratory of Synthetic Chemistry, Institute of Molecular Functional Materials, Chemical Biology Centre and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Pui-Yan Lee
- State Key Laboratory of Synthetic Chemistry, Institute of Molecular Functional Materials, Chemical Biology Centre and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Yi Man Eva Fung
- State Key Laboratory of Synthetic Chemistry, Institute of Molecular Functional Materials, Chemical Biology Centre and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Di Hu
- State Key Laboratory of Synthetic Chemistry, Institute of Molecular Functional Materials, Chemical Biology Centre and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Chun-Nam Lok
- State Key Laboratory of Synthetic Chemistry, Institute of Molecular Functional Materials, Chemical Biology Centre and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Chi-Ming Che
- State Key Laboratory of Synthetic Chemistry, Institute of Molecular Functional Materials, Chemical Biology Centre and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China.,HKU Shenzhen Institute of Research and Innovation, Shenzhen, 518053, China
| |
Collapse
|
23
|
Bouché M, Dahm G, Maisse-François A, Achard T, Bellemin-Laponnaz S. Selective Formation of cis-N-Heterocyclic Carbene-PtII-Pnictogen Complexes and in vitro Evaluation of Their Cytotoxic Activities toward Cancer Cells. Eur J Inorg Chem 2016. [DOI: 10.1002/ejic.201600296] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Mathilde Bouché
- Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS); DMO; Université de Strasbourg-CNRS UMR 7504; 23 rue du Loess, BP 43 67034 Strasbourg France
| | - Georges Dahm
- Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS); DMO; Université de Strasbourg-CNRS UMR 7504; 23 rue du Loess, BP 43 67034 Strasbourg France
| | - Aline Maisse-François
- Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS); DMO; Université de Strasbourg-CNRS UMR 7504; 23 rue du Loess, BP 43 67034 Strasbourg France
| | - Thierry Achard
- Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS); DMO; Université de Strasbourg-CNRS UMR 7504; 23 rue du Loess, BP 43 67034 Strasbourg France
| | - Stéphane Bellemin-Laponnaz
- Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS); DMO; Université de Strasbourg-CNRS UMR 7504; 23 rue du Loess, BP 43 67034 Strasbourg France
- DMO; University of Strasbourg Institute for Advanced Study (USIAS); 5 allée du Général Rouvillois 67083 Strasbourg France
| |
Collapse
|
24
|
Sun RWY, Zhang M, Li D, Zhang ZF, Cai H, Li M, Xian YJ, Ng SW, Wong AST. Dinuclear Gold(I) Pyrrolidinedithiocarbamato Complex: Cytotoxic and Antimigratory Activities on Cancer Cells and the Use of Metal-Organic Framework. Chemistry 2015; 21:18534-8. [PMID: 26459298 DOI: 10.1002/chem.201503656] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Indexed: 01/08/2023]
Abstract
A dinuclear gold(I) pyrrolidinedithiocarbamato complex (1) with a bidentate carbene ligand has been constructed and shows potent in vitro cytotoxic activities towards cisplatin-resistant ovarian cancer cells A2780cis. Its rigid scaffold enables a zinc(II)-based metal-organic framework (Zn-MOF) to be used as a carrier in facilitating the uptake and release of 1 in solutions. Instead of using a conventional dialysis approach for the drug-release testing, in this study, a set of transwell assay-based experiments have been designed and employed to examine the cytotoxic and antimigratory activities of 1@Zn-MOF towards A2780cis.
Collapse
Affiliation(s)
- Raymond Wai-Yin Sun
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, 243 Da Xue Road, Shantou, Guangdong 515063 (P. R. China).
| | - Ming Zhang
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, 243 Da Xue Road, Shantou, Guangdong 515063 (P. R. China)
| | - Dan Li
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, 243 Da Xue Road, Shantou, Guangdong 515063 (P. R. China).
| | - Zhi-Feng Zhang
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, 243 Da Xue Road, Shantou, Guangdong 515063 (P. R. China)
| | - Hong Cai
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, 243 Da Xue Road, Shantou, Guangdong 515063 (P. R. China)
| | - Mian Li
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, 243 Da Xue Road, Shantou, Guangdong 515063 (P. R. China)
| | - Yue-Jiao Xian
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, 243 Da Xue Road, Shantou, Guangdong 515063 (P. R. China)
| | - Seik Weng Ng
- Department of Chemistry, University of Malaya, 50603 Kuala Lumpur (Malaysia).,Chemistry Department, King Abdulaziz University, 80203 Jeddah (Saudi Arabia)
| | - Alice Sze-Tsai Wong
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong (P. R. China)
| |
Collapse
|
25
|
He L, Chen T, You Y, Hu H, Zheng W, Kwong WL, Zou T, Che CM. A Cancer-Targeted Nanosystem for Delivery of Gold(III) Complexes: Enhanced Selectivity and Apoptosis-Inducing Efficacy of a Gold(III) Porphyrin Complex. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201407143] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
26
|
He L, Chen T, You Y, Hu H, Zheng W, Kwong WL, Zou T, Che CM. A Cancer-Targeted Nanosystem for Delivery of Gold(III) Complexes: Enhanced Selectivity and Apoptosis-Inducing Efficacy of a Gold(III) Porphyrin Complex. Angew Chem Int Ed Engl 2014; 53:12532-6. [DOI: 10.1002/anie.201407143] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2014] [Revised: 08/13/2014] [Indexed: 12/23/2022]
|