1
|
Kumar R, Aggarwal H, Srivastava A. Of Twists and Curves: Electronics, Photophysics, and Upcoming Applications of Non-Planar Conjugated Organic Molecules. Chemistry 2020; 26:10653-10675. [PMID: 32118325 DOI: 10.1002/chem.201905071] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 02/02/2020] [Indexed: 01/02/2023]
Abstract
Non-planar conjugated organic molecules (NPCOMs) contain π-conjugation across their length and also exhibit asymmetry in their conformation. In other words, certain molecular fragments in NPCOMs are either twisted or curved out of planarity. This conformational asymmetry in NPCOMs leads to non-uniform charge-distribution across the molecule, with important photophysical and electronic consequences such as altered thermodynamic stability, chemical reactivity, as well as materials properties. Majorly, NPCOMs can be classified as having either Fused or Rotatable architectures. NPCOMs have been the focus of significant scientific attention in the recent past due to their exciting photophysical behavior that includes intramolecular charge-transfer (ICT), thermally activated delayed fluorescence (TADF) and long-lived charge-separated states. In addition, they also have many useful materials characteristics such as biradical character, semi-conductivity, dynamic conformations, and mechanochromism. As a result, rational design of NPCOMs and mapping their structure-property correlations has become imperative. Researchers have executed conformational changes in NPCOMs through a variety of external stimuli such as pH, temperature, anions-cations, solvent, electric potential, and mechanical force in order to tailor their photophysical, optoelectronic and magnetic properties. Converging to these points, this review highlights the lucrative electronic features, photophysical traits and upcoming applications of NPCOMs by a selective survey of the recent scientific literature.
Collapse
Affiliation(s)
- Rajesh Kumar
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal (IISER Bhopal), Bhauri, Bhopal Bypass Road, Bhopal, 462066, India
| | - Himanshu Aggarwal
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal (IISER Bhopal), Bhauri, Bhopal Bypass Road, Bhopal, 462066, India
| | - Aasheesh Srivastava
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal (IISER Bhopal), Bhauri, Bhopal Bypass Road, Bhopal, 462066, India
| |
Collapse
|
3
|
Liang Z, Fan X, Lei H, Qi J, Li Y, Gao J, Huo M, Yuan H, Zhang W, Lin H, Zheng H, Cao R. Cobalt-Nitrogen-Doped Helical Carbonaceous Nanotubes as a Class of Efficient Electrocatalysts for the Oxygen Reduction Reaction. Angew Chem Int Ed Engl 2018; 57:13187-13191. [PMID: 30095856 DOI: 10.1002/anie.201807854] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 08/09/2018] [Indexed: 12/25/2022]
Abstract
The oxygen reduction reaction (ORR) is of significant importance in the development of fuel cells. Now, cobalt-nitrogen-doped chiral carbonaceous nanotubes (l/d-CCNTs-Co) are presented as efficient electrocatalysts for ORR. The chiral template, N-stearyl-l/d-glutamic acid, induces the self-assembly of well-arranged polypyrrole and the formation of ordered graphene carbon with helical structures at the molecular level after the pyrolysis process. Co was subsequently introduced through the post-synthesis method. The obtained l/d-CCNTs-Co exhibits superior ORR performance, including long-term stability and better methanol tolerance compared to achiral Co-doped carbon materials and commercial Pt/C. DFT calculations demonstrate that the charges on the twisted surface of l/d-CCNTs are widely separated; as a result the Co atoms are more exposed on the chiral CCNTs. This work gives us a new understanding of the effects of helical structures in electrocatalysis.
Collapse
Affiliation(s)
- Zuozhong Liang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China
| | - Xing Fan
- Institute of Functional Nano & Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, P. R. China
| | - Haitao Lei
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China
| | - Jing Qi
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China
| | - Youyong Li
- Institute of Functional Nano & Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, P. R. China
| | - Jinpeng Gao
- Department of Chemistry, Purdue University, West Lafayette, Indiana, 47907, USA
| | - Meiling Huo
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China
| | - Haitao Yuan
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China
| | - Wei Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China
| | - Haiping Lin
- Institute of Functional Nano & Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, P. R. China
| | - Haoquan Zheng
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China
| | - Rui Cao
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China.,Department of Chemistry, Renmin University of China, Beijing, 100872, P. R. China
| |
Collapse
|
4
|
Liang Z, Fan X, Lei H, Qi J, Li Y, Gao J, Huo M, Yuan H, Zhang W, Lin H, Zheng H, Cao R. Cobalt–Nitrogen‐Doped Helical Carbonaceous Nanotubes as a Class of Efficient Electrocatalysts for the Oxygen Reduction Reaction. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201807854] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Zuozhong Liang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical EngineeringShaanxi Normal University Xi'an 710119 P. R. China
| | - Xing Fan
- Institute of Functional Nano & Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials & DevicesSoochow University Suzhou 215123 P. R. China
| | - Haitao Lei
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical EngineeringShaanxi Normal University Xi'an 710119 P. R. China
| | - Jing Qi
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical EngineeringShaanxi Normal University Xi'an 710119 P. R. China
| | - Youyong Li
- Institute of Functional Nano & Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials & DevicesSoochow University Suzhou 215123 P. R. China
| | - Jinpeng Gao
- Department of ChemistryPurdue University West Lafayette Indiana 47907 USA
| | - Meiling Huo
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical EngineeringShaanxi Normal University Xi'an 710119 P. R. China
| | - Haitao Yuan
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical EngineeringShaanxi Normal University Xi'an 710119 P. R. China
| | - Wei Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical EngineeringShaanxi Normal University Xi'an 710119 P. R. China
| | - Haiping Lin
- Institute of Functional Nano & Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials & DevicesSoochow University Suzhou 215123 P. R. China
| | - Haoquan Zheng
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical EngineeringShaanxi Normal University Xi'an 710119 P. R. China
| | - Rui Cao
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical EngineeringShaanxi Normal University Xi'an 710119 P. R. China
- Department of ChemistryRenmin University of China Beijing 100872 P. R. China
| |
Collapse
|
5
|
Dou C, Ding Z, Zhang Z, Xie Z, Liu J, Wang L. Developing Conjugated Polymers with High Electron Affinity by Replacing a CC Unit with a B←N Unit. Angew Chem Int Ed Engl 2015; 54:3648-52. [DOI: 10.1002/anie.201411973] [Citation(s) in RCA: 189] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 01/09/2015] [Indexed: 11/10/2022]
|
6
|
Dou C, Ding Z, Zhang Z, Xie Z, Liu J, Wang L. Developing Conjugated Polymers with High Electron Affinity by Replacing a CC Unit with a B←N Unit. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201411973] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|