1
|
Ndukwe ARN, Wiedbrauk S, Boase NRB, Fairfull‐Smith KE. Strategies to Improve the Potency of Oxazolidinones towards Bacterial Biofilms. Chem Asian J 2022; 17:e202200201. [PMID: 35352479 PMCID: PMC9321984 DOI: 10.1002/asia.202200201] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/28/2022] [Indexed: 11/29/2022]
Abstract
Biofilms are part of the natural lifecycle of bacteria and are known to cause chronic infections that are difficult to treat. Most antibiotics are developed and tested against bacteria in the planktonic state and are ineffective against bacterial biofilms. The oxazolidinones, including the last resort drug linezolid, are one of the main classes of synthetic antibiotics progressed to clinical use in the last 50 years. They have a unique mechanism of action and only develop low levels of resistance in the clinical setting. With the aim of providing insight into strategies to design more potent antibiotic compounds with activity against bacterial biofilms, we review the biofilm activity of clinically approved oxazolidinones and report on structural modifications to oxazolidinones and their delivery systems which lead to enhanced anti-biofilm activity.
Collapse
Affiliation(s)
- Audrey R. N. Ndukwe
- School of Chemistry and Physics, Faculty of ScienceQueensland University of TechnologyBrisbaneQueensland4001Australia
- Centre for Materials ScienceQueensland University of TechnologyBrisbaneQueensland4001Australia
| | - Sandra Wiedbrauk
- School of Chemistry and Physics, Faculty of ScienceQueensland University of TechnologyBrisbaneQueensland4001Australia
- Centre for Materials ScienceQueensland University of TechnologyBrisbaneQueensland4001Australia
| | - Nathan R. B. Boase
- School of Chemistry and Physics, Faculty of ScienceQueensland University of TechnologyBrisbaneQueensland4001Australia
- Centre for Materials ScienceQueensland University of TechnologyBrisbaneQueensland4001Australia
| | - Kathryn E. Fairfull‐Smith
- School of Chemistry and Physics, Faculty of ScienceQueensland University of TechnologyBrisbaneQueensland4001Australia
- Centre for Materials ScienceQueensland University of TechnologyBrisbaneQueensland4001Australia
| |
Collapse
|
2
|
Frohock BH, Gilbertie JM, Daiker JC, Schnabel LV, Pierce JG. 5-Benzylidene-4-Oxazolidinones Are Synergistic with Antibiotics for the Treatment of Staphylococcus aureus Biofilms. Chembiochem 2019; 21:933-937. [PMID: 31688982 DOI: 10.1002/cbic.201900633] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Indexed: 01/17/2023]
Abstract
The failure of frontline antibiotics in the clinic is one of the most serious threats to human health and requires a multitude of novel therapeutics and innovative approaches to treatment so as to curtail the growing crisis. In addition to traditional resistance mechanisms resulting in the lack of efficacy of many antibiotics, most chronic and recurring infections are further made tolerant to antibiotic action by the presence of biofilms. Herein, we report an expanded set of 5-benzylidene-4-oxazolidinones that are able to inhibit the formation of Staphylococcus aureus biofilms, disperse preformed biofilms, and, in combination with common antibiotics, are able to significantly reduce the bacterial load in a robust collagen-matrix model of biofilm infection.
Collapse
Affiliation(s)
- Bram H Frohock
- Department of Chemistry, College of Sciences, NC State University, 2620 Yarbrough Drive, Raleigh, NC, 27695, USA.,Comparative Medicine Institute, NC State University, Raleigh, NC, 27607, USA
| | - Jessica M Gilbertie
- Department of Clinical Sciences, College of Veterinary Medicine, NC State University, 1060 William Moore Drive, Raleigh, NC, 27607, USA.,Comparative Medicine Institute, NC State University, Raleigh, NC, 27607, USA
| | - Jennifer C Daiker
- Department of Chemistry, College of Sciences, NC State University, 2620 Yarbrough Drive, Raleigh, NC, 27695, USA.,Department of Clinical Sciences, College of Veterinary Medicine, NC State University, 1060 William Moore Drive, Raleigh, NC, 27607, USA.,Comparative Medicine Institute, NC State University, Raleigh, NC, 27607, USA
| | - Lauren V Schnabel
- Department of Clinical Sciences, College of Veterinary Medicine, NC State University, 1060 William Moore Drive, Raleigh, NC, 27607, USA.,Comparative Medicine Institute, NC State University, Raleigh, NC, 27607, USA
| | - Joshua G Pierce
- Department of Chemistry, College of Sciences, NC State University, 2620 Yarbrough Drive, Raleigh, NC, 27695, USA.,Comparative Medicine Institute, NC State University, Raleigh, NC, 27607, USA
| |
Collapse
|
3
|
Mishra R, Panday AK, Choudhury LH, Pal J, Subramanian R, Verma A. Multicomponent Reactions of Arylglyoxal, 4-Hydroxycoumarin, and Cyclic 1,3-C,N-Binucleophiles: Binucleophile-Directed Synthesis of Fused Five- and Six-Membered N-Heterocycles. European J Org Chem 2017. [DOI: 10.1002/ejoc.201700115] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Richa Mishra
- Department of Chemistry; Indian Institute of Technology Patna; Bihta 801103 Bihar Patna India
| | - Anoop Kumar Panday
- Department of Chemistry; Indian Institute of Technology Patna; Bihta 801103 Bihar Patna India
| | - Lokman H. Choudhury
- Department of Chemistry; Indian Institute of Technology Patna; Bihta 801103 Bihar Patna India
| | - Jagannath Pal
- Department of Chemistry; Indian Institute of Technology Patna; Bihta 801103 Bihar Patna India
| | - Ranga Subramanian
- Department of Chemistry; Indian Institute of Technology Patna; Bihta 801103 Bihar Patna India
| | - Ajay Verma
- Department of Chemistry; IISER Bhopal; Indore By-pass Road, Bhauri 462066 Bhopal Madhya Pradesh, Bhopal India
| |
Collapse
|
4
|
Chung WJ, Vanderwal CD. Stereoselective Halogenation in Natural Product Synthesis. Angew Chem Int Ed Engl 2016; 55:4396-434. [PMID: 26833878 PMCID: PMC6028003 DOI: 10.1002/anie.201506388] [Citation(s) in RCA: 197] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Revised: 08/27/2015] [Indexed: 01/23/2023]
Abstract
At last count, nearly 5000 halogenated natural products have been discovered. In approximately half of these compounds, the carbon atom to which the halogen is bound is sp(3) -hybridized; therefore, there are an enormous number of natural products for which stereocontrolled halogenation must be a critical component of any synthesis strategy. In this Review, we critically discuss the methods and strategies used for stereoselective introduction of halogen atoms in the context of natural product synthesis. Using the successes of the past, we also attempt to identify gaps in our synthesis technology that would aid the synthesis of halogenated natural products, as well as existing methods that have not yet seen application in complex molecule synthesis. The chemistry described herein demonstrates yet again how natural products continue to provide the inspiration for critical advances in chemical synthesis.
Collapse
Affiliation(s)
- Won-jin Chung
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju, South Korea.
| | | |
Collapse
|