1
|
Polyene Macrolactams from Marine and Terrestrial Sources: Structure, Production Strategies, Biosynthesis and Bioactivities. Mar Drugs 2022; 20:md20060360. [PMID: 35736163 PMCID: PMC9230918 DOI: 10.3390/md20060360] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 05/24/2022] [Accepted: 05/25/2022] [Indexed: 02/04/2023] Open
Abstract
Over the past few decades (covering 1972 to 2022), astounding progress has been made in the elucidation of structures, bioactivities and biosynthesis of polyene macrolactams (PMLs), but they have only been partially summarized. PMLs possess a wide range of biological activities, particularly distinctive fungal inhibitory abilities, which render them a promising drug candidate. Moreover, the unique biosynthetic pathways including β-amino acid initiation and pericyclic reactions were presented in PMLs, leading to more attention from inside and outside the natural products community. According to current summation, in this review, the chem- and bio-diversity of PMLs from marine and terrestrial sources are considerably rich. A systematic, critical and comprehensive overview is in great need. This review described the PMLs’ general structural features, production strategies, biosynthetic pathways and the mechanisms of bioactivities. The challenges and opportunities for the research of PMLs are also discussed.
Collapse
|
2
|
Wang L, Huang Y, Zhang L, Liu Z, Liu W, Xu H, Zhang Q, Zhang H, Yan Y, Liu Z, Zhang T, Zhang W, Zhang C. Structures and absolute configurations of phomalones from the coral-associated fungus Parengyodontium album sp. SCSIO 40430. Org Biomol Chem 2021; 19:6030-6037. [PMID: 34190307 DOI: 10.1039/d1ob00869b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Coral-associated microorganisms are likely to play an important role in host defense by the production of antimicrobials. Six new chromanones, namely, phomalichenones H-M (5, 6, and 8-11), and ten known analogues (1-4, 7, and 12-16) were isolated from the coral-associated fungus Parengyodontium album sp. SCSIO 40430. Their structures were elucidated by comprehensive spectroscopic analyses. In addition, the structure of 8 was confirmed by X-ray crystallographic analysis. Resolution using a chiral column showed that each of the compounds 1-8 was an enantiomeric mixture with variable enantiomeric excess (ee) values. Their absolute configurations were determined by a comparison of the experimental and calculated ECD data and by a modified Mosher's method. A plausible biosynthetic scheme was proposed for the production of 1-16. Compounds 2, 3, 13, and 14 were found to be active against Mycobacterium tuberculosis H37Ra with MIC values of 16-64 μg mL-1.
Collapse
Affiliation(s)
- Lu Wang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China. and University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanbing Huang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China. and Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Beibu Gulf Marine Research Center, Guangxi Academy of Sciences, Nanning 530007, China
| | - Liping Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China. and Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Zhiwen Liu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China. and Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Wei Liu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China. and Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Huixin Xu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China. and University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qingbo Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China. and Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Haibo Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China. and Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Yan Yan
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China. and University of Chinese Academy of Sciences, Beijing 100049, China and Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Zhiyong Liu
- Tuberculosis Research Laboratory, State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China and Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, Guangzhou 510530, China
| | - Tianyu Zhang
- Tuberculosis Research Laboratory, State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China and Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, Guangzhou 510530, China
| | - Wenjun Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China. and University of Chinese Academy of Sciences, Beijing 100049, China and Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Changsheng Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China. and University of Chinese Academy of Sciences, Beijing 100049, China and Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China and Sanya Institute of Oceanology, SCSIO, Yazhou Scientific Bay, Sanya 572000, China
| |
Collapse
|
3
|
Li Y, Wang H, Liu Y, Jiao Y, Li S, Shen Y, Du L. Biosynthesis of the Polycyclic System in the Antifungal HSAF and Analogues from
Lysobacter enzymogenes. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201802488] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Yaoyao Li
- State Key Laboratory of Microbial Technology, Key Laboratory of Chemical Biology School of Pharmaceutical Sciences Shandong University Jinan 250100 China
| | - Haoxin Wang
- State Key Laboratory of Microbial Technology, Key Laboratory of Chemical Biology School of Pharmaceutical Sciences Shandong University Jinan 250100 China
| | - Yan Liu
- State Key Laboratory of Microbial Technology, Key Laboratory of Chemical Biology School of Pharmaceutical Sciences Shandong University Jinan 250100 China
| | - Yujie Jiao
- State Key Laboratory of Microbial Technology, Key Laboratory of Chemical Biology School of Pharmaceutical Sciences Shandong University Jinan 250100 China
| | - Shanren Li
- Department of Chemistry University of Nebraska-Lincoln Lincoln NE 68588 USA
| | - Yuemao Shen
- State Key Laboratory of Microbial Technology, Key Laboratory of Chemical Biology School of Pharmaceutical Sciences Shandong University Jinan 250100 China
| | - Liangcheng Du
- Department of Chemistry University of Nebraska-Lincoln Lincoln NE 68588 USA
| |
Collapse
|
4
|
Li Y, Wang H, Liu Y, Jiao Y, Li S, Shen Y, Du L. Biosynthesis of the Polycyclic System in the Antifungal HSAF and Analogues from Lysobacter enzymogenes. Angew Chem Int Ed Engl 2018; 57:6221-6225. [PMID: 29573092 DOI: 10.1002/anie.201802488] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Indexed: 01/05/2023]
Abstract
The biocontrol agent Lysobacter enzymogenes produces polycyclic tetramate macrolactams (PoTeMs), including the antifungal HSAF. To elucidate the biosynthesis of the cyclic systems, we identified eleven HSAF precursors/analogues with zero, one, two, or three rings through heterologous expression of the HSAF gene cluster. A series of combinatorial gene expression and deletion experiments showed that OX3 is the "gatekeeper" responsible for the formation of the first 5-membered ring from lysobacterene A, OX1 and OX2 are responsible for formation of the second ring but with different selectivity, and OX4 is responsible for formation of the 6-membered ring. In vitro experiments showed that OX4 is an NADPH-dependent enzyme that catalyzes the reductive cyclization of 3-dehydroxy alteramide C to form 3-dehydroxy HSAF. Thus, the multiplicity of OX genes is the basis for the structural diversity of the HSAF family, which is the only characterized PoTeM cluster that involves four redox enzymes in the formation of the cyclic system.
Collapse
Affiliation(s)
- Yaoyao Li
- State Key Laboratory of Microbial Technology, Key Laboratory of Chemical Biology, School of Pharmaceutical Sciences, Shandong University, Jinan, 250100, China
| | - Haoxin Wang
- State Key Laboratory of Microbial Technology, Key Laboratory of Chemical Biology, School of Pharmaceutical Sciences, Shandong University, Jinan, 250100, China
| | - Yan Liu
- State Key Laboratory of Microbial Technology, Key Laboratory of Chemical Biology, School of Pharmaceutical Sciences, Shandong University, Jinan, 250100, China
| | - Yujie Jiao
- State Key Laboratory of Microbial Technology, Key Laboratory of Chemical Biology, School of Pharmaceutical Sciences, Shandong University, Jinan, 250100, China
| | - Shanren Li
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Yuemao Shen
- State Key Laboratory of Microbial Technology, Key Laboratory of Chemical Biology, School of Pharmaceutical Sciences, Shandong University, Jinan, 250100, China
| | - Liangcheng Du
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| |
Collapse
|
5
|
Qi Y, Ding E, Blodgett JAV. Native and Engineered Clifednamide Biosynthesis in Multiple Streptomyces spp. ACS Synth Biol 2018; 7:357-362. [PMID: 29249153 DOI: 10.1021/acssynbio.7b00349] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Polycyclic tetramate macrolactam (PTM) natural products are produced by actinomycetes and other bacteria. PTMs are often bioactive, and the simplicity of their biosynthetic clusters make them attractive for bioengineering. Clifednamide-type PTMs from Streptomyces sp. strain JV178 contain a distinctive ketone group, suggesting the existence of a novel PTM oxidizing enzyme. Here, we report the new cytochrome P450 enzyme (CftA) is required for clifednamide production. Genome mining was used to identify several new clifednamide producers, some having improved clifednamide yields. Using a parallel synthetic biology approach, CftA isozymes were used to engineer the ikarugamycin pathway of Streptomyces sp. strain NRRL F-2890 to yield clifednamides. Further, we observed that strong CftA expression leads to the production of a new PTM, clifednamide C. We demonstrate the utility of both genome mining and synthetic biology to rapidly increase clifednamide production.
Collapse
Affiliation(s)
- Yunci Qi
- Department of Biology, Washington University in St Louis, St Louis, Missouri 63130, United States
| | - Edward Ding
- Department of Biology, Washington University in St Louis, St Louis, Missouri 63130, United States
| | - Joshua A. V. Blodgett
- Department of Biology, Washington University in St Louis, St Louis, Missouri 63130, United States
| |
Collapse
|
6
|
Zhao Y, Qian G, Chen Y, Du L, Liu F. Transcriptional and Antagonistic Responses of Biocontrol Strain Lysobacter enzymogenes OH11 to the Plant Pathogenic Oomycete Pythium aphanidermatum. Front Microbiol 2017. [PMID: 28634478 PMCID: PMC5459918 DOI: 10.3389/fmicb.2017.01025] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Lysobacter enzymogenes is a ubiquitous, beneficial, plant-associated bacterium emerging as a novel biological control agent. It has the potential to become a new source of antimicrobial secondary metabolites such as the Heat-Stable Antifungal Factor (HSAF), which is a broad-spectrum antimycotic with a novel mode of action. However, very little information about how L. enzymogenes detects and responds to fungi or oomycetes has been reported. An in vitro confrontation bioassay between the pathogenic oomycete Pythium aphanidermatum and the biocontrol bacterial strain L. enzymogenes OH11 was used to analyze the transcriptional changes in the bacteria that were induced by the oomycetes. Analysis was performed at three time points of the interaction, starting before inhibition zone formation until inhibition zone formation. A L. enzymogenes OH11 DNA microarray was constructed for the analysis. Microarray analysis indicated that a wide range of genes belonging to 14 diverse functions in L. enzymogenes were affected by P. aphanidermatum as critical antagonistic effects occurred. L. enzymogenes detected and responded to the presence of P. aphanidermatum early, but alteration of gene expression typically occurred after inhibition zone formation. The presence of P. aphanidermatum increased the twitching motility and HSAF production in L. enzymogenes. We also performed a contact interaction between L. enzymogenes and P. aphanidermatum, and found that HSAF played a critical role in the interaction. Our experiments demonstrated that L. enzymogenes displayed transcriptional and antagonistic responses to P. aphanidermatum in order to gain advantages in the competition with this oomycete. This study revealed new insights into the interactions between bacteria and oomycete.
Collapse
Affiliation(s)
- Yangyang Zhao
- Institute of Plant Protection, Jiangsu Academy of Agricultural SciencesNanjing, China
| | - Guoliang Qian
- Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Ministry of EducationNanjing, China
| | - Yuan Chen
- Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Ministry of EducationNanjing, China
| | - Liangcheng Du
- Department of Chemistry, University of Nebraska-LincolnLincoln, NE, United States
| | - Fengquan Liu
- Institute of Plant Protection, Jiangsu Academy of Agricultural SciencesNanjing, China
| |
Collapse
|