1
|
Feng J, Shaik S, Wang B. Spin‐Regulated Electron Transfer and Exchange‐Enhanced Reactivity in Fe
4
S
4
‐Mediated Redox Reaction of the Dph2 Enzyme During the Biosynthesis of Diphthamide. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202107008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Jianqiang Feng
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Sason Shaik
- Institute of Chemistry The Hebrew University of Jerusalem Jerusalem 9190401 Israel
| | - Binju Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| |
Collapse
|
2
|
Feng J, Shaik S, Wang B. Spin-Regulated Electron Transfer and Exchange-Enhanced Reactivity in Fe 4 S 4 -Mediated Redox Reaction of the Dph2 Enzyme During the Biosynthesis of Diphthamide. Angew Chem Int Ed Engl 2021; 60:20430-20436. [PMID: 34302311 DOI: 10.1002/anie.202107008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Indexed: 11/06/2022]
Abstract
The [4Fe-4S]-dependent radical S-adenosylmethionine (SAM) proteins is one of large families of redox enzymes that are able to carry a panoply of challenging transformations. Despite the extensive studies of structure-function relationships of radical SAM (RS) enzymes, the electronic state-dependent reactivity of the [4Fe-4S] cluster in these enzymes remains elusive. Using combined MD simulations and QM/MM calculations, we deciphered the electronic state-dependent reactivity of the [4Fe-4S] cluster in Dph2, a key enzyme involved in the biosynthesis of diphthamide. Our calculations show that the reductive cleavage of the S-C(γ) bond is highly dependent on the electronic structure of [4Fe-4S]. Interestingly, the six electronic states can be classified into a low-energy and a high-energy groups, which are correlated with the net spin of Fe4 atom ligated to SAM. Due to the driving force of Fe4-C(γ) bonding, the net spin on the Fe4 moiety dictate the shift of the opposite spin electron from the Fe1-Fe2-Fe3 block to SAM. Such spin-regulated electron transfer results in the exchange-enhanced reactivity in the lower-energy group compared with those in the higher-energy group. This reactivity principle provides fundamental mechanistic insights into reactivities of [4Fe-4S] cluster in RS enzymes.
Collapse
Affiliation(s)
- Jianqiang Feng
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Sason Shaik
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, 9190401, Israel
| | - Binju Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| |
Collapse
|
3
|
Serapian SA, Triveri A, Marchetti F, Castelli M, Colombo G. Exploiting Folding and Degradation Machineries To Target Undruggable Proteins: What Can a Computational Approach Tell Us? ChemMedChem 2021; 16:1593-1599. [PMID: 33443306 DOI: 10.1002/cmdc.202000960] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Indexed: 01/03/2023]
Abstract
Advances in genomics and proteomics have unveiled an ever-growing number of key proteins and provided mechanistic insights into the genesis of pathologies. This wealth of data showed that changes in expression levels of specific proteins, mutations, and post-translational modifications can result in (often subtle) perturbations of functional protein-protein interaction networks, which ultimately determine disease phenotypes. Although many such validated pathogenic proteins have emerged as ideal drug targets, there are also several that escape traditional pharmacological regulation; these proteins have thus been labeled "undruggable". The challenges posed by undruggable targets call for new sorts of molecular intervention. One fascinating solution is to perturb a pathogenic protein's expression levels, rather than blocking its activities. In this Concept paper, we shall discuss chemical interventions aimed at recruiting undruggable proteins to the ubiquitin proteasome system, or aimed at disrupting protein-protein interactions in the chaperone-mediated cellular folding machinery: both kinds of intervention lead to a decrease in the amount of active pathogenic protein expressed. Specifically, we shall discuss the role of computational strategies in understanding the molecular determinants characterizing the function of synthetic molecules typically designed for either type of intervention. Finally, we shall provide our perspectives and views on the current limitations and possibilities to expand the scope of rational approaches to the design of chemical regulators of protein levels.
Collapse
Affiliation(s)
- Stefano A Serapian
- Department of Chemistry, University of Pavia, Via Taramelli 12, 27100, Pavia, Italy
| | - Alice Triveri
- Department of Chemistry, University of Pavia, Via Taramelli 12, 27100, Pavia, Italy
| | - Filippo Marchetti
- Department of Chemistry, University of Pavia, Via Taramelli 12, 27100, Pavia, Italy
| | - Matteo Castelli
- Department of Chemistry, University of Pavia, Via Taramelli 12, 27100, Pavia, Italy
| | - Giorgio Colombo
- Department of Chemistry, University of Pavia, Via Taramelli 12, 27100, Pavia, Italy
| |
Collapse
|
4
|
Czescik J, Zamolo S, Darbre T, Rigo. R, Sissi C, Pecina A, Riccardi L, De Vivo M, Mancin F, Scrimin P. A Gold Nanoparticle Nanonuclease Relying on a Zn(II) Mononuclear Complex. Angew Chem Int Ed Engl 2021; 60:1423-1432. [PMID: 32985766 PMCID: PMC7839518 DOI: 10.1002/anie.202012513] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Indexed: 12/18/2022]
Abstract
Similarly to enzymes, functionalized gold nanoparticles efficiently catalyze chemical reactions, hence the term nanozymes. Herein, we present our results showing how surface-passivated gold nanoparticles behave as synthetic nanonucleases, able to cleave pBR322 plasmid DNA with the highest efficiency reported so far for catalysts based on a single metal ion mechanism. Experimental and computational data indicate that we have been successful in creating a catalytic site precisely mimicking that suggested for natural metallonucleases relying on a single metal ion for their activity. It comprises one Zn(II) ion to which a phosphate diester of DNA is coordinated. Importantly, as in nucleic acids-processing enzymes, a positively charged arginine plays a key role by assisting with transition state stabilization and by reducing the pKa of the nucleophilic alcohol of a serine. Our results also show how designing a catalyst for a model substrate (bis-p-nitrophenylphosphate) may provide wrong indications as for its efficiency when it is tested against the real target (plasmid DNA).
Collapse
Affiliation(s)
- Joanna Czescik
- Department of Chemical SciencesUniversity of Padovavia Marzolo, 135131PadovaItaly
- Current address: School of Life and Health SciencesAston UniversityB4 7ETBirminghamUK
| | - Susanna Zamolo
- Department of Chemistry and BiochemistryUniversity of BernFreiestrasse 3CH-3012BernSwitzerland
| | - Tamis Darbre
- Department of Chemistry and BiochemistryUniversity of BernFreiestrasse 3CH-3012BernSwitzerland
| | - Riccardo Rigo.
- Department of Pharmaceutical and Pharmacological SciencesUniversity of Padovavia Marzolo 535131PadovaItaly
| | - Claudia Sissi
- Department of Pharmaceutical and Pharmacological SciencesUniversity of Padovavia Marzolo 535131PadovaItaly
| | - Adam Pecina
- Laboratory of Molecular Modeling & Drug DiscoveryIstituto Italiano di Tecnologia (IIT)Via Morego 3016163GenovaItaly
| | - Laura Riccardi
- Laboratory of Molecular Modeling & Drug DiscoveryIstituto Italiano di Tecnologia (IIT)Via Morego 3016163GenovaItaly
| | - Marco De Vivo
- Laboratory of Molecular Modeling & Drug DiscoveryIstituto Italiano di Tecnologia (IIT)Via Morego 3016163GenovaItaly
| | - Fabrizio Mancin
- Department of Chemical SciencesUniversity of Padovavia Marzolo, 135131PadovaItaly
| | - Paolo Scrimin
- Department of Chemical SciencesUniversity of Padovavia Marzolo, 135131PadovaItaly
| |
Collapse
|
5
|
Czescik J, Zamolo S, Darbre T, Rigo. R, Sissi C, Pecina A, Riccardi L, De Vivo M, Mancin F, Scrimin P. A Gold Nanoparticle Nanonuclease Relying on a Zn(II) Mononuclear Complex. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202012513] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Joanna Czescik
- Department of Chemical Sciences University of Padova via Marzolo, 1 35131 Padova Italy
- Current address: School of Life and Health Sciences Aston University B4 7ET Birmingham UK
| | - Susanna Zamolo
- Department of Chemistry and Biochemistry University of Bern Freiestrasse 3 CH-3012 Bern Switzerland
| | - Tamis Darbre
- Department of Chemistry and Biochemistry University of Bern Freiestrasse 3 CH-3012 Bern Switzerland
| | - Riccardo Rigo.
- Department of Pharmaceutical and Pharmacological Sciences University of Padova via Marzolo 5 35131 Padova Italy
| | - Claudia Sissi
- Department of Pharmaceutical and Pharmacological Sciences University of Padova via Marzolo 5 35131 Padova Italy
| | - Adam Pecina
- Laboratory of Molecular Modeling & Drug Discovery Istituto Italiano di Tecnologia (IIT) Via Morego 30 16163 Genova Italy
| | - Laura Riccardi
- Laboratory of Molecular Modeling & Drug Discovery Istituto Italiano di Tecnologia (IIT) Via Morego 30 16163 Genova Italy
| | - Marco De Vivo
- Laboratory of Molecular Modeling & Drug Discovery Istituto Italiano di Tecnologia (IIT) Via Morego 30 16163 Genova Italy
| | - Fabrizio Mancin
- Department of Chemical Sciences University of Padova via Marzolo, 1 35131 Padova Italy
| | - Paolo Scrimin
- Department of Chemical Sciences University of Padova via Marzolo, 1 35131 Padova Italy
| |
Collapse
|
6
|
Wang B, Fita I, Rovira C. Theory Uncovers the Role of the Methionine-Tyrosine-Tryptophan Radical Adduct in the Catalase Reaction of KatGs: O2
Release Mediated by Proton-Coupled Electron Transfer. Chemistry 2018; 24:5388-5395. [DOI: 10.1002/chem.201706076] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Indexed: 11/08/2022]
Affiliation(s)
- Binju Wang
- Departament de Química Inorgànica i Orgànica, (secció de Química Orgànica) &, Institut de Química Teòrica i Computacional (IQTCUB); Universitat de Barcelona; Martí i Franquès 1 08028 Barcelona Spain
| | - Ignacio Fita
- Instituto de Biología Molecular (IBMB-CSIC) and; Maria de Maeztu Unit of Excellence. Barcelona Science Park; Baldiri i Reixac 10. 08028 Barcelona Spain
| | - Carme Rovira
- Departament de Química Inorgànica i Orgànica, (secció de Química Orgànica) &, Institut de Química Teòrica i Computacional (IQTCUB); Universitat de Barcelona; Martí i Franquès 1 08028 Barcelona Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA); Passeig Lluís Companys 23 08010 Barcelona Spain
| |
Collapse
|
7
|
Tantillo DJ. Bedeutung der inhärenten Substratreaktivität bei enzymvermittelten Cyclisierungen/Umlagerungen von Carbokationen. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201702363] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Dean J. Tantillo
- Department of Chemistry University of California—Davis 1 Shields Avenue Davis CA 95616 USA
| |
Collapse
|
8
|
Tantillo DJ. Importance of Inherent Substrate Reactivity in Enzyme-Promoted Carbocation Cyclization/Rearrangements. Angew Chem Int Ed Engl 2017; 56:10040-10045. [PMID: 28349600 DOI: 10.1002/anie.201702363] [Citation(s) in RCA: 118] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Indexed: 11/08/2022]
Abstract
The importance of inherent substrate reactivity for terpene synthase enzymes is discussed, with a focus on recent experimental tests of predictions derived from computations on gas-phase reactivity of carbocations.
Collapse
Affiliation(s)
- Dean J Tantillo
- Department of Chemistry, University of California-Davis, 1 Shields Avenue, Davis, CA, 95616, USA
| |
Collapse
|
9
|
Souza BS, Mora JR, Wanderlind EH, Clementin RM, Gesser JC, Fiedler HD, Nome F, Menger FM. Transforming a Stable Amide into a Highly Reactive One: Capturing the Essence of Enzymatic Catalysis. Angew Chem Int Ed Engl 2017; 56:5345-5348. [PMID: 28378430 DOI: 10.1002/anie.201701306] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 03/10/2017] [Indexed: 11/06/2022]
Abstract
Aspartic proteinases, which include HIV-1 proteinase, function with two aspartate carboxy groups at the active site. This relationship has been modeled in a system possessing an otherwise unactivated amide positioned between two carboxy groups. The model amide is cleaved at an enzyme-like rate that renders the amide nonisolable at 35 °C and pH 4 owing to the joint presence of carboxy and carboxylate groups. A currently advanced theory attributing almost the entire catalytic power of enzymes to electrostatic reorganization is shown to be superfluous when suitable interatomic interactions are present. Our kinetic results are consistent with spatiotemporal concepts where embedding the amide group between two carboxylic moieties in proper geometries, at distances less than the diameter of water, leads to enzyme-like rate enhancements. Space and time are the essence of enzyme catalysis.
Collapse
Affiliation(s)
- Bruno S Souza
- Department of Chemistry, Federal University of Santa Catarina, Florianópolis, Santa Catarina, 88040-900, Brazil
| | - Jose R Mora
- Dpto. de Ingeniería Química, Universidad San Francisco de Quito, Ecuador
| | - Eduardo H Wanderlind
- Department of Chemistry, Federal University of Santa Catarina, Florianópolis, Santa Catarina, 88040-900, Brazil
| | | | - Jose C Gesser
- Department of Chemistry, Federal University of Santa Catarina, Florianópolis, Santa Catarina, 88040-900, Brazil
| | - Haidi D Fiedler
- Department of Chemistry, Federal University of Santa Catarina, Florianópolis, Santa Catarina, 88040-900, Brazil
| | - Faruk Nome
- Department of Chemistry, Federal University of Santa Catarina, Florianópolis, Santa Catarina, 88040-900, Brazil
| | - Fredric M Menger
- Department of Chemistry, Emory University, Atlanta, GA, 30322, USA
| |
Collapse
|
10
|
Souza BS, Mora JR, Wanderlind EH, Clementin RM, Gesser JC, Fiedler HD, Nome F, Menger FM. Transforming a Stable Amide into a Highly Reactive One: Capturing the Essence of Enzymatic Catalysis. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201701306] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Bruno S. Souza
- Department of Chemistry; Federal University of Santa Catarina; Florianópolis Santa Catarina 88040-900 Brazil
| | - Jose R. Mora
- Dpto. de Ingeniería Química; Universidad San Francisco de Quito; Ecuador
| | - Eduardo H. Wanderlind
- Department of Chemistry; Federal University of Santa Catarina; Florianópolis Santa Catarina 88040-900 Brazil
| | | | - Jose C. Gesser
- Department of Chemistry; Federal University of Santa Catarina; Florianópolis Santa Catarina 88040-900 Brazil
| | - Haidi D. Fiedler
- Department of Chemistry; Federal University of Santa Catarina; Florianópolis Santa Catarina 88040-900 Brazil
| | - Faruk Nome
- Department of Chemistry; Federal University of Santa Catarina; Florianópolis Santa Catarina 88040-900 Brazil
| | | |
Collapse
|
11
|
Wang B, Shaik S. The Nickel-Pincer Complex in Lactate Racemase Is an Electron Relay and Sink that acts through Proton-Coupled Electron Transfer. Angew Chem Int Ed Engl 2017; 56:10098-10102. [DOI: 10.1002/anie.201612065] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Indexed: 11/05/2022]
Affiliation(s)
- Binju Wang
- Institute of Chemistry and the Lise Meitner-Minerva Center for Computational Quantum Chemistry; The Hebrew University of Jerusalem; 91904 Jerusalem Israel
| | - Sason Shaik
- Institute of Chemistry and the Lise Meitner-Minerva Center for Computational Quantum Chemistry; The Hebrew University of Jerusalem; 91904 Jerusalem Israel
| |
Collapse
|
12
|
Wang B, Shaik S. The Nickel-Pincer Complex in Lactate Racemase Is an Electron Relay and Sink that acts through Proton-Coupled Electron Transfer. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201612065] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Binju Wang
- Institute of Chemistry and the Lise Meitner-Minerva Center for Computational Quantum Chemistry; The Hebrew University of Jerusalem; 91904 Jerusalem Israel
| | - Sason Shaik
- Institute of Chemistry and the Lise Meitner-Minerva Center for Computational Quantum Chemistry; The Hebrew University of Jerusalem; 91904 Jerusalem Israel
| |
Collapse
|
13
|
Wiedemann EN, Mandl FA, Blank ID, Ochsenfeld C, Ofial AR, Sieber SA. Kinetic and Theoretical Studies of Beta-Lactone Reactivity-A Quantitative Scale for Biological Application. Chempluschem 2015; 80:1673-1679. [PMID: 31973367 DOI: 10.1002/cplu.201500246] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Indexed: 11/08/2022]
Abstract
Natural products comprise a rich source for bioactive molecules with medicinal relevance. Many of these contain electrophilic scaffolds that bind conserved enzyme active sites covalently. Prominent examples include beta-lactams and beta-lactones, which specifically acylate serine residues in diverse peptidases. Although these scaffolds appear similar, their bioactivities and corresponding protein targets vary. To quantify and dissect these differences in bioactivities, the kinetics of the reactions of beta-butyrolactone with a set of reference amines in buffered aqueous solution at 37 °C have been analyzed. Different product ratios of C1 versus C3 attack on the beta-butyrolactone have been observed, depending on the aliphatic or aromatic nature of the standard amine used. Quantum mechanics/molecular mechanics (QM/MM) calculations reveal that a H3 O+ molecule has a crucial role in stabilizing C3 attack by aniline, through coordination of the lactone ring oxygen. In agreement with their weak proteome reactivity, monocyclic beta-lactams did not react with the set of standard nucleophiles studied herein. Bicyclic beta-lactams, however, exhibited a lower activation barrier, and thus, reacted with standard nucleophiles. This study represents a starting point for semiquantitative reactivity scales for natural products, which, in analogy to chemical reactivity scales, will provide predictions for electrophilic modifications in biological systems.
Collapse
Affiliation(s)
- Elija N Wiedemann
- Department Chemie, Ludwig-Maximilians-Universität München, Butenandtstrasse 5-13, 81377, München, Germany
| | - Franziska A Mandl
- Center for Integrated Protein Science CIPSM, Institute of Advanced Studies IAS, Department Chemie, Lehrstuhl für Organische Chemie II, Technische Universität München, Lichtenbergstrasse 4, 85748, Garching, Germany
| | - Iris D Blank
- Department Chemie, Ludwig-Maximilians-Universität München, Butenandtstrasse 5-13, 81377, München, Germany
| | - Christian Ochsenfeld
- Department Chemie, Ludwig-Maximilians-Universität München, Butenandtstrasse 5-13, 81377, München, Germany
| | - Armin R Ofial
- Department Chemie, Ludwig-Maximilians-Universität München, Butenandtstrasse 5-13, 81377, München, Germany
| | - Stephan A Sieber
- Center for Integrated Protein Science CIPSM, Institute of Advanced Studies IAS, Department Chemie, Lehrstuhl für Organische Chemie II, Technische Universität München, Lichtenbergstrasse 4, 85748, Garching, Germany
| |
Collapse
|
14
|
Sun Z, Lonsdale R, Kong XD, Xu JH, Zhou J, Reetz MT. Reshaping an Enzyme Binding Pocket for Enhanced and Inverted Stereoselectivity: Use of Smallest Amino Acid Alphabets in Directed Evolution. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201501809] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
15
|
Sun Z, Lonsdale R, Kong XD, Xu JH, Zhou J, Reetz MT. Reshaping an Enzyme Binding Pocket for Enhanced and Inverted Stereoselectivity: Use of Smallest Amino Acid Alphabets in Directed Evolution. Angew Chem Int Ed Engl 2015; 54:12410-5. [DOI: 10.1002/anie.201501809] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Indexed: 01/06/2023]
|