1
|
König JA, Morgenstern B, Jauch J. The Total Synthesis of Hyperfirin via a Cyclooctadiene Strategy. Org Lett 2024; 26:7083-7087. [PMID: 38996193 DOI: 10.1021/acs.orglett.4c01836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2024]
Abstract
Polycyclic polyprenylated acylphloroglucinols (PPAPs) combine compelling structural complexity with effective biological activity. The total synthesis of Hyperfirin is reported as one linear sequence. Key to this novel modular strategy is to access the bicyclo[3.3.1]nonane-2,4,9-trione framework via transannular acylation of a decorated eight-membered ring, followed by late stage bridgehead substitution. The described route adds flexibility to PPAP construction and broadens the scope of eight-membered ring chemistry.
Collapse
Affiliation(s)
- Julien A König
- Organic Chemistry II, Saarland University, 66123 Saarbrücken, Germany
| | - Bernd Morgenstern
- Service Center X-ray Diffraction, Saarland University, 66123 Saarbrücken, Germany
| | - Johann Jauch
- Organic Chemistry II, Saarland University, 66123 Saarbrücken, Germany
| |
Collapse
|
2
|
Ghosh T, Bhakta S. Advancements in Gold-Catalyzed Cascade Reactions to Access Carbocycles and Heterocycles: An Overview. CHEM REC 2023; 23:e202200225. [PMID: 36543388 DOI: 10.1002/tcr.202200225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/03/2022] [Indexed: 12/24/2022]
Abstract
This review summarizes recent developments (from 2006 to 2022) in numerous important and efficient carbo- and heterocycle generations using gold-catalyzed cascade protocols. Herein, methodologies involve selectivity, cost-effectiveness, and ease of product formation being controlled by the ligand as well as the counter anion, catalyst, substrate, and reaction conditions. Gold-catalyzed cascade reactions covered different strategies through the compilation of various approaches such as cyclization, hydroarylation, intermolecular and intramolecular cascade reactions, etc. This entitled reaction is also useful for the synthesis of spiro, fused, bridged carbo- and heterocycles.
Collapse
Affiliation(s)
- T Ghosh
- Department of Chemistry, Jadavpur University, Kolkata, 700 032, West Bengal, India.,Department of Applied Chemistry, Maulana Abul Kalam Azad University of Technology, West Bengal, Haringhata-741249, Nadia, West Bengal, India
| | - S Bhakta
- Department of Applied Chemistry, Maulana Abul Kalam Azad University of Technology, West Bengal, Haringhata-741249, Nadia, West Bengal, India
| |
Collapse
|
3
|
Ji Y, Hong B, Franzoni I, Wang M, Guan W, Jia H, Li H. Enantioselective Total Synthesis of Hyperforin and Pyrohyperforin. Angew Chem Int Ed Engl 2022; 61:e202116136. [DOI: 10.1002/anie.202116136] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Indexed: 12/18/2022]
Affiliation(s)
- Yunpeng Ji
- State Key Laboratory of Natural and Biomimetic Drugs, Chemical Biology Center School of Pharmaceutical Sciences Peking University Xue Yuan Road No. 38 Beijing 100191 China
| | - Benke Hong
- State Key Laboratory of Natural and Biomimetic Drugs, Chemical Biology Center School of Pharmaceutical Sciences Peking University Xue Yuan Road No. 38 Beijing 100191 China
| | - Ivan Franzoni
- NuChem Sciences Inc. 2350 rue Cohen Suite 201 Saint-Laurent Quebec H4R 2N6 Canada
| | - Mengyang Wang
- State Key Laboratory of Natural and Biomimetic Drugs, Chemical Biology Center School of Pharmaceutical Sciences Peking University Xue Yuan Road No. 38 Beijing 100191 China
| | - Weiqiang Guan
- State Key Laboratory of Natural and Biomimetic Drugs, Chemical Biology Center School of Pharmaceutical Sciences Peking University Xue Yuan Road No. 38 Beijing 100191 China
| | - Hongli Jia
- State Key Laboratory of Natural and Biomimetic Drugs, Chemical Biology Center School of Pharmaceutical Sciences Peking University Xue Yuan Road No. 38 Beijing 100191 China
| | - Houhua Li
- State Key Laboratory of Natural and Biomimetic Drugs, Chemical Biology Center School of Pharmaceutical Sciences Peking University Xue Yuan Road No. 38 Beijing 100191 China
- State Key Laboratory of Medicinal Chemical Biology Nankai University 38 Tongyan Rd Tianjin 300350 China
| |
Collapse
|
4
|
Ji Y, Hong B, Franzoni I, Wang M, Guan W, Jia H, Li H. Enantioselective Total Synthesis of Hyperforin and Pyrohyperforin. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202116136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yunpeng Ji
- State Key Laboratory of Natural and Biomimetic Drugs, Chemical Biology Center School of Pharmaceutical Sciences Peking University Xue Yuan Road No. 38 Beijing 100191 China
| | - Benke Hong
- State Key Laboratory of Natural and Biomimetic Drugs, Chemical Biology Center School of Pharmaceutical Sciences Peking University Xue Yuan Road No. 38 Beijing 100191 China
| | - Ivan Franzoni
- NuChem Sciences Inc. 2350 rue Cohen Suite 201 Saint-Laurent Quebec H4R 2N6 Canada
| | - Mengyang Wang
- State Key Laboratory of Natural and Biomimetic Drugs, Chemical Biology Center School of Pharmaceutical Sciences Peking University Xue Yuan Road No. 38 Beijing 100191 China
| | - Weiqiang Guan
- State Key Laboratory of Natural and Biomimetic Drugs, Chemical Biology Center School of Pharmaceutical Sciences Peking University Xue Yuan Road No. 38 Beijing 100191 China
| | - Hongli Jia
- State Key Laboratory of Natural and Biomimetic Drugs, Chemical Biology Center School of Pharmaceutical Sciences Peking University Xue Yuan Road No. 38 Beijing 100191 China
| | - Houhua Li
- State Key Laboratory of Natural and Biomimetic Drugs, Chemical Biology Center School of Pharmaceutical Sciences Peking University Xue Yuan Road No. 38 Beijing 100191 China
- State Key Laboratory of Medicinal Chemical Biology Nankai University 38 Tongyan Rd Tianjin 300350 China
| |
Collapse
|
5
|
Jang D, Choi M, Chen J, Lee C. Enantioselective Total Synthesis of (+)-Garsubellin A. Angew Chem Int Ed Engl 2021; 60:22735-22739. [PMID: 34398517 PMCID: PMC8519110 DOI: 10.1002/anie.202109193] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 08/05/2021] [Indexed: 01/03/2023]
Abstract
Garsubellin A is a meroterpene capable of enhancing the enzyme choline acetyltransferase whose decreased level is believed to play a central role in the symptoms of Alzheimer's disease. Due to the potentially useful biological activity together with the novel bridged and fused cyclic molecular architecture, garsubellin A has garnered substantial synthetic interest, but its absolute stereostructure has been undetermined. We report here the first enantioselective total synthesis of (+)-garsubellin A. Our synthesis relies on stereoselective fashioning of a cyclohexanone framework and double conjugate addition of 1,2-ethanedithiol that promotes aldol cyclization to build the bicyclic [3.3.1] skeleton. The twelve-step, protecting group-free synthetic route has enabled the syntheses of both the natural (-)-garsubellin A and its unnatural (+)-antipode for biological evaluations.
Collapse
Affiliation(s)
- Dongseok Jang
- Department of ChemistrySeoul National UniversitySeoul08826Republic of Korea
| | - Minchul Choi
- Department of ChemistrySeoul National UniversitySeoul08826Republic of Korea
| | - Jinglong Chen
- Department of ChemistryPrinceton UniversityPrincetonNew Jersey08540USA
- Current address: College of Materials Science and EngineeringFuzhou UniversityFuzhou350108China
| | - Chulbom Lee
- Department of ChemistrySeoul National UniversitySeoul08826Republic of Korea
| |
Collapse
|
6
|
Jang D, Choi M, Chen J, Lee C. Enantioselective Total Synthesis of (+)‐Garsubellin A. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202109193] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Dongseok Jang
- Department of Chemistry Seoul National University Seoul 08826 Republic of Korea
| | - Minchul Choi
- Department of Chemistry Seoul National University Seoul 08826 Republic of Korea
| | - Jinglong Chen
- Department of Chemistry Princeton University Princeton New Jersey 08540 USA
- Current address: College of Materials Science and Engineering Fuzhou University Fuzhou 350108 China
| | - Chulbom Lee
- Department of Chemistry Seoul National University Seoul 08826 Republic of Korea
| |
Collapse
|
7
|
Boyce JH, Reisman BJ, Bachmann BO, Porco JA. Synthesis and Multiplexed Activity Profiling of Synthetic Acylphloroglucinol Scaffolds. Angew Chem Int Ed Engl 2021; 60:1263-1272. [PMID: 32965753 PMCID: PMC7855714 DOI: 10.1002/anie.202010338] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Indexed: 12/20/2022]
Abstract
Reported here are novel formic-acid-mediated rearrangements of dearomatized acylphloroglucinols to access a structurally diverse group of synthetic acylphloroglucinol scaffolds (SASs). Density-functional theory (DFT) optimized orbital and stereochemical analyses shed light on the mechanism of these rearrangements. Products were evaluated by multiplexed activity profiling (MAP), an unbiased platform which assays multiple biological readouts simultaneously at single-cell resolution for markers of cell signaling, and can aid in distinguishing genuine activity from assay interference. MAP identified a number of SASs that suppressed pS6 (Ser235/236), a marker for activation of the mTOR and ERK signaling pathways. These results illustrate how biomimetic synthesis and multiplexed activity profiling can reveal the pharmacological potential of novel chemotypes by diversity-oriented synthesis.
Collapse
Affiliation(s)
- Jonathan H Boyce
- Department of Chemistry and Center for Molecular Discovery (BU-CMD), Boston University, 590 Commonwealth Avenue, Boston, MA, 02215, USA
- Current Address: Department of Pharmaceutical Chemistry, University of California, San Francisco, 555 Mission Bay Blvd S., San Francisco, CA, 94158, USA
| | - Benjamin J Reisman
- Vanderbilt University, Chemistry Department, 7330 Stevenson Center, Nashville, TN, 37235, USA
| | - Brian O Bachmann
- Vanderbilt University, Chemistry Department, 7330 Stevenson Center, Nashville, TN, 37235, USA
| | - John A Porco
- Department of Chemistry and Center for Molecular Discovery (BU-CMD), Boston University, 590 Commonwealth Avenue, Boston, MA, 02215, USA
| |
Collapse
|
8
|
Boyce JH, Reisman BJ, Bachmann BO, Porco JA. Synthesis and Multiplexed Activity Profiling of Synthetic Acylphloroglucinol Scaffolds. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202010338] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Jonathan H. Boyce
- Department of Chemistry and Center for Molecular Discovery (BU-CMD) Boston University 590 Commonwealth Avenue Boston MA 02215 USA
- Current Address: Department of Pharmaceutical Chemistry University of California, San Francisco 555 Mission Bay Blvd S. San Francisco CA 94158 USA
| | - Benjamin J. Reisman
- Vanderbilt University Chemistry Department 7330 Stevenson Center Nashville TN 37235 USA
| | - Brian O. Bachmann
- Vanderbilt University Chemistry Department 7330 Stevenson Center Nashville TN 37235 USA
| | - John A. Porco
- Department of Chemistry and Center for Molecular Discovery (BU-CMD) Boston University 590 Commonwealth Avenue Boston MA 02215 USA
| |
Collapse
|
9
|
Tao Y, Reisenauer K, Taube JH, Romo D. Total Synthesis and Anticancer Activity of (+)‐Hypercalin C and Congeners. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201812909] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Yongfeng Tao
- Department of Chemistry and BiochemistryBaylor University 101 Bagby Ave. Waco TX 76798 USA
| | | | - Joseph H. Taube
- Department of BiologyBaylor University 101 Bagby Ave. Waco TX 76798 USA
| | - Daniel Romo
- Department of Chemistry and BiochemistryBaylor University 101 Bagby Ave. Waco TX 76798 USA
| |
Collapse
|
10
|
Tao Y, Reisenauer K, Taube JH, Romo D. Total Synthesis and Anticancer Activity of (+)-Hypercalin C and Congeners. Angew Chem Int Ed Engl 2019; 58:2734-2738. [PMID: 30600887 DOI: 10.1002/anie.201812909] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Indexed: 11/09/2022]
Abstract
The hypercalins are dearomatized acylphloroglucinols with a pendant complex cyclopentane ring that exhibit activity against several cancer cell lines. We report the first total synthesis of (+)-hypercalin C employing a convergent strategy that enabled the dissection of the essential structural features required for the observed anticancer activity. A strategic disconnection involving an unusual C sp 3 -C sp 2 Suzuki-Miyaura coupling with an α-bromo enolether also revealed an unexpected C-H activation. This strategy targeted designed analogues along the synthetic route to address particular biological questions. These results support the hypothesis that hypercalin C may act as a proton shuttle with the dearomatized acylphloroglucinol moiety being essential for this activity.
Collapse
Affiliation(s)
- Yongfeng Tao
- Department of Chemistry and Biochemistry, Baylor University, 101 Bagby Ave., Waco, TX, 76798, USA
| | - Keighley Reisenauer
- Department of Biology, Baylor University, 101 Bagby Ave., Waco, TX, 76798, USA
| | - Joseph H Taube
- Department of Biology, Baylor University, 101 Bagby Ave., Waco, TX, 76798, USA
| | - Daniel Romo
- Department of Chemistry and Biochemistry, Baylor University, 101 Bagby Ave., Waco, TX, 76798, USA
| |
Collapse
|
11
|
Carreras J, Kirillova MS, Echavarren AM. Synthesis of (-)-Cannabimovone and Structural Reassignment of Anhydrocannabimovone through Gold(I)-Catalyzed Cycloisomerization. Angew Chem Int Ed Engl 2016; 55:7121-5. [PMID: 27119910 PMCID: PMC5053274 DOI: 10.1002/anie.201601834] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Indexed: 11/11/2022]
Abstract
The first total synthesis of cannabimovone from Cannabis sativa and anhydrocannabimovone was achieved by means of a highly stereoselective gold(I)-catalyzed cycloisomerization. The results led to reassignment of the structure of anhydrocannabimovone.
Collapse
Affiliation(s)
- Javier Carreras
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007, Tarragona, Spain
| | - Mariia S Kirillova
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007, Tarragona, Spain
| | - Antonio M Echavarren
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007, Tarragona, Spain.
- Departament de Química Analítica i Química, Orgànica, Universitat Rovira i Virgili, C/ Marcel⋅li Domingo s/n, 43007, Tarragona, Spain.
| |
Collapse
|
12
|
Carreras J, Kirillova MS, Echavarren AM. Synthesis of (−)-Cannabimovone and Structural Reassignment of Anhydrocannabimovone through Gold(I)-Catalyzed Cycloisomerization. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201601834] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Javier Carreras
- Institute of Chemical Research of Catalonia (ICIQ); Barcelona Institute of Science and Technology; Av. Països Catalans 16 43007 Tarragona Spain
| | - Mariia S. Kirillova
- Institute of Chemical Research of Catalonia (ICIQ); Barcelona Institute of Science and Technology; Av. Països Catalans 16 43007 Tarragona Spain
| | - Antonio M. Echavarren
- Institute of Chemical Research of Catalonia (ICIQ); Barcelona Institute of Science and Technology; Av. Països Catalans 16 43007 Tarragona Spain
- Departament de Química Analítica i Química, Orgànica; Universitat Rovira i Virgili; C/ Marcel⋅li Domingo s/n 43007 Tarragona Spain
| |
Collapse
|
13
|
Büschleb M, Dorich S, Hanessian S, Tao D, Schenthal KB, Overman LE. Synthetic Strategies toward Natural Products Containing Contiguous Stereogenic Quaternary Carbon Atoms. Angew Chem Int Ed Engl 2016; 55:4156-86. [PMID: 26836448 PMCID: PMC4865016 DOI: 10.1002/anie.201507549] [Citation(s) in RCA: 257] [Impact Index Per Article: 32.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Indexed: 11/06/2022]
Abstract
Strategies for the total synthesis of complex natural products that contain two or more contiguous stereogenic quaternary carbon atoms in their intricate structures are reviewed with 12 representative examples. Emphasis has been put on methods to create quaternary carbon stereocenters, including syntheses of the same natural product by different groups, thereby showcasing the diversity of thought and individual creativity. A compendium of selected natural products containing two or more contiguous stereogenic quaternary carbon atoms and key reactions in their total or partial syntheses is provided in the Supporting Information.
Collapse
Affiliation(s)
- Martin Büschleb
- Department of Chemistry, Université de Montréal, Station Centre-Ville, C. P. 6128, Montréal, Qc, H3C 3J7, Canada
| | - Stéphane Dorich
- Department of Chemistry, Université de Montréal, Station Centre-Ville, C. P. 6128, Montréal, Qc, H3C 3J7, Canada
| | - Stephen Hanessian
- Department of Chemistry, Université de Montréal, Station Centre-Ville, C. P. 6128, Montréal, Qc, H3C 3J7, Canada.
| | - Daniel Tao
- Department of Chemistry, University of California, 1102 Natural Sciences II, Irvine, CA, 92697-2025, USA
| | - Kyle B Schenthal
- Department of Chemistry, University of California, 1102 Natural Sciences II, Irvine, CA, 92697-2025, USA
| | - Larry E Overman
- Department of Chemistry, University of California, 1102 Natural Sciences II, Irvine, CA, 92697-2025, USA
| |
Collapse
|
14
|
Büschleb M, Dorich S, Hanessian S, Tao D, Schenthal KB, Overman LE. Strategien für die Synthese von Naturstoffen mit benachbarten stereogenen quartären Kohlenstoffatomen. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201507549] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Martin Büschleb
- Department of Chemistry; Université de Montréal, Station Centre-Ville; C. P. 6128 Montréal Qc H3C 3J7 Kanada
| | - Stéphane Dorich
- Department of Chemistry; Université de Montréal, Station Centre-Ville; C. P. 6128 Montréal Qc H3C 3J7 Kanada
| | - Stephen Hanessian
- Department of Chemistry; Université de Montréal, Station Centre-Ville; C. P. 6128 Montréal Qc H3C 3J7 Kanada
| | - Daniel Tao
- Department of Chemistry; University of California; 1102 Natural Sciences II Irvine CA 92697-2025 USA
| | - Kyle B. Schenthal
- Department of Chemistry; University of California; 1102 Natural Sciences II Irvine CA 92697-2025 USA
| | - Larry E. Overman
- Department of Chemistry; University of California; 1102 Natural Sciences II Irvine CA 92697-2025 USA
| |
Collapse
|
15
|
Pflästerer D, Hashmi ASK. Gold catalysis in total synthesis – recent achievements. Chem Soc Rev 2016; 45:1331-67. [DOI: 10.1039/c5cs00721f] [Citation(s) in RCA: 600] [Impact Index Per Article: 75.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The most recent achievements of gold catalysed transformations applied in total synthesis of natural products are reviewed and analysed.
Collapse
Affiliation(s)
- Daniel Pflästerer
- Organisch-Chemisches Institut
- Universität Heidelberg
- 69120 Heidelberg
- Germany
| | | |
Collapse
|
16
|
McGee P, Bellavance G, Korobkov I, Tarasewicz A, Barriault L. Synthesis and Isolation of Organogold Complexes through a Controlled 1,2-Silyl Migration. Chemistry 2015; 21:9662-5. [DOI: 10.1002/chem.201501648] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Indexed: 11/07/2022]
|
17
|
Socolsky C, Plietker B. Total Synthesis and Absolute Configuration Assignment of MRSA Active Garcinol and Isogarcinol. Chemistry 2014; 21:3053-61. [DOI: 10.1002/chem.201406077] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Indexed: 11/11/2022]
|