1
|
Jiang J, Nikbin E, Liu Y, Lei S, Ye G, Howe JY, Manners I, Winnik MA. Defect-Induced Secondary Crystals Drive Two-Dimensional to Three-Dimensional Morphological Evolution in the Co-Self-Assembly of Polyferrocenylsilane Block Copolymer and Homopolymer. J Am Chem Soc 2023; 145:28096-28110. [PMID: 38088827 DOI: 10.1021/jacs.3c09791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
Bottom-up fabrication protocols for uniform 3D hierarchical structures in solution are rare. We report two different approaches to fabricate uniform 3D spherulites and their precursors using mixtures of poly(ferrocenyldimethylsilane) (PFS) block copolymer (BCP) and PFS homopolymer (HP). Both protocols are designed to promote defects in 2D assemblies that serve as intermediate structures. In a multistep seeded growth protocol, we add the BCP/HP mixture to (1D) rod-like PFS micelles in a selective solvent as first-generation seeds. This leads to 2D platelet structures. If this step is conducted at a high supersaturation, secondary crystals form on the basal surface of these platelets. Co-crystallization and rapid crystallization of BCP/HP promote the formation of defects that act as nucleation sites for secondary crystals, resulting in multilayer platelets. This is the key step. The multilayer platelets serve as second-generation seeds upon subsequent addition of BCP/HP blends and, with increasing supersaturation, lead to the sequential formation of uniform (3D) hedrites, sheaves, and spherulites. Similar structures can also be obtained by a simple one-pot direct self-assembly (heating-cooling-aging) protocol of PFS BCP/HP blends. In this case, for a carefully chosen but narrow temperature range, PFS HPs nucleate formation of uniform structures, and the annealing temperature regulates the supersaturation level. In both protocols, the competitive crystallization kinetics of HP/BCP affects the morphology. Both protocols exhibit broad generality. We believe the morphological transformation from 2D to 3D structures, regulated by defect formation, co-crystallization, and supersaturation levels, could apply to various semicrystalline polymers. Moreover, the 3D structures are sufficiently robust to serve as recoverable carriers for nanoparticle catalysts, exhibiting valuable catalytic activity and opening new possibilities for applications requiring exquisite 3D structures.
Collapse
Affiliation(s)
- Jingjie Jiang
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Ehsan Nikbin
- Department of Material Science and Engineering, University of Toronto, Toronto, Ontario M5S 3E4, Canada
| | - Yang Liu
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Shixing Lei
- Department of Chemistry, University of Victoria, Victoria, British Columbia V8P 5C2, Canada
| | - Gang Ye
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, 100084, China
| | - Jane Y Howe
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
- Department of Material Science and Engineering, University of Toronto, Toronto, Ontario M5S 3E4, Canada
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3E2, Canada
| | - Ian Manners
- Department of Chemistry, University of Victoria, Victoria, British Columbia V8P 5C2, Canada
| | - Mitchell A Winnik
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
- Department of Material Science and Engineering, University of Toronto, Toronto, Ontario M5S 3E4, Canada
| |
Collapse
|
2
|
Li H, Han L, Zhu Y, Fernández-Trillo P, He F. Transformation from Rod-Like to Diamond-Like Micelles by Thermally Induced Nucleation Self-Assembly. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00744] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Heng Li
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055 China
- School of Chemistry, University of Birmingham, Birmingham, B15 2TT UK
| | - Liang Han
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055 China
| | - Yulin Zhu
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055 China
| | | | - Feng He
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055 China
- Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518055 China
| |
Collapse
|
3
|
Song S, Zhou H, Ye S, Tam J, Howe JY, Manners I, Winnik MA. Spherulite‐Like Micelles. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202101177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Shaofei Song
- Department of Chemistry University of Toronto 80 St. George Street Toronto Ontario M5S 3H6 Canada
| | - Hang Zhou
- Department of Chemistry University of Toronto 80 St. George Street Toronto Ontario M5S 3H6 Canada
| | - Shuyang Ye
- Department of Chemistry University of Toronto 80 St. George Street Toronto Ontario M5S 3H6 Canada
| | - Jason Tam
- Department of Materials Science and Engineering University of Toronto 184 College Street Toronto Ontario M5S 3E4 Canada
| | - Jane Y. Howe
- Department of Chemistry University of Toronto 80 St. George Street Toronto Ontario M5S 3H6 Canada
- Department of Materials Science and Engineering University of Toronto 184 College Street Toronto Ontario M5S 3E4 Canada
- Department of Chemical Engineering and Applied Chemistry University of Toronto 200 College St Toronto Ontario M5S 3E5 Canada
| | - Ian Manners
- Department of Chemistry University of Victoria 3800 Finnerty Road Victoria British Columbia V8P 5C2 Canada
| | - Mitchell A. Winnik
- Department of Chemistry University of Toronto 80 St. George Street Toronto Ontario M5S 3H6 Canada
- Department of Chemical Engineering and Applied Chemistry University of Toronto 200 College St Toronto Ontario M5S 3E5 Canada
| |
Collapse
|
4
|
Song S, Zhou H, Ye S, Tam J, Howe JY, Manners I, Winnik MA. Spherulite-Like Micelles. Angew Chem Int Ed Engl 2021; 60:10950-10956. [PMID: 33626229 DOI: 10.1002/anie.202101177] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Indexed: 11/06/2022]
Abstract
One-dimensional (1D) and 2D structures by crystallization-driven self-assembly of block copolymers (BCPs) can form fascinating hierarchical structures through secondary self-assembly. But examples of 3D structures formed via hierarchical self-assembly are rare. Here we report seeded growth experiments in decane of a poly(ferrocenyldimethylsilane) BCP with an amphiphilic corona forming block in which lenticular platelets grow into classic spherulite-like uniform colloidally stable structures. These 3D objects are spherically symmetric on the exterior, but asymmetric near the core, where there is a more open structure consisting of sheaf-like leaves. The most remarkable aspect of these experiments is that growth stops at different stages of growth process, depending upon how much unimer is added in the seeded growth step. The system provides a model for studying spherulitic growth where real-time observations on their growth at different stages remains challenging.
Collapse
Affiliation(s)
- Shaofei Song
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, M5S 3H6, Canada
| | - Hang Zhou
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, M5S 3H6, Canada
| | - Shuyang Ye
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, M5S 3H6, Canada
| | - Jason Tam
- Department of Materials Science and Engineering, University of Toronto, 184 College Street, Toronto, Ontario, M5S 3E4, Canada
| | - Jane Y Howe
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, M5S 3H6, Canada.,Department of Materials Science and Engineering, University of Toronto, 184 College Street, Toronto, Ontario, M5S 3E4, Canada.,Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College St, Toronto, Ontario, M5S 3E5, Canada
| | - Ian Manners
- Department of Chemistry, University of Victoria, 3800 Finnerty Road, Victoria, British Columbia, V8P 5C2, Canada
| | - Mitchell A Winnik
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, M5S 3H6, Canada.,Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College St, Toronto, Ontario, M5S 3E5, Canada
| |
Collapse
|
5
|
Fan B, Wan J, Zhai J, Chen X, Thang SH. Triggered Degradable Colloidal Particles with Ordered Inverse Bicontinuous Cubic and Hexagonal Mesophases. ACS NANO 2021; 15:4688-4698. [PMID: 33646766 DOI: 10.1021/acsnano.0c09166] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
We herein report a facile strategy to prepare triggered degradable block copolymer nano/macro-objects, ranging from typical micelles, worms, jellyfish, and vesicles to rarely achieved spongosomes, cubosomes, and hexosomes via RAFT-mediated polymerization-induced self-assembly (PISA). The morphological transitions from a simple spherical micelle to a spongosome, ordered Im3¯m cubosome, and p6mm hexosome were captured and demonstrated by TEM, SEM, and synchrotron SAXS. In addition, morphological phase diagrams including important factors, such as solid contents, degree of polymerization (DP), and stabilizer block chain length, were constructed to unveil the formation mechanism and guide the scalable preparation of complex morphologies with packing parameter (P) > 1. This study not only represents an example that achieved inverse mesophases via acrylate-based monomers with high conversion but also reports a triggered degradable system in the most extended morphological range via PISA. The facile synthesis and stimuli-responsiveness of our system should greatly expand the utility of polymer inverse mesophases for triggered releasing, templating, and many other applications.
Collapse
Affiliation(s)
| | | | - Jiali Zhai
- School of Science, College of Science, Engineering and Health, RMIT University, Melbourne, VIC 3000, Australia
| | | | | |
Collapse
|
6
|
Iwaura R. Construction of a DNA-Based Supramolecular Nanosheet That Emits Bluish-White Light from Charge-Transfer Excited States of the Nucleobases. Chemistry 2019; 25:2281-2287. [PMID: 30411410 DOI: 10.1002/chem.201804960] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 11/06/2018] [Indexed: 12/26/2022]
Abstract
1,ω-Inosinic acid-bearing bolaamphiphiles dI(18), dI(19), and dI(20) with a 3'-phosphorylated inosine as a universal base connected to each end of an oligomethylene chain were synthesized for the first time. Single-component self-assemblies of these bolaamphiphiles and their binary self-assemblies with salmon sperm DNA were studied by AFM; temperature-dependent UV absorption, fluorescence, and circular dichroism spectroscopy; and gel electrophoresis. The binary self-assembly of dI(20) and salmon sperm DNA (dI(20)-DNA) had a nanosheet structure with a homogeneous thickness of about 6 nm and widths of several micrometers. Interestingly, an aqueous solution of the nanosheets showed a broad absorption band originating from the charge-transfer (CT) states of the nucleobase in the long-wavelength region (>300 nm), and the molar absorptivity per nucleobase was calculated to be approximately 150 times that of single-stranded (dT20 and dA20) and double-stranded (dT20-dA20) oligonucleotides. In addition, a continuous and broad emission band originating from CT excited states of the nucleobases was observed in the visible region. These observations indicate that CT states of the nucleobases were formed and stabilized in the supramolecular nanosheet and that bluish white light was emitted from CT excited states of the nucleobases.
Collapse
Affiliation(s)
- Rika Iwaura
- Food Research Institute, National Agriculture and Food Research Organization, 2-1-12 Kannondai, Tsukuba, Ibaraki, 305-8642, Japan
| |
Collapse
|
7
|
Jarrett‐Wilkins C, He X, Symons HE, Harniman RL, Faul CFJ, Manners I. Living Supramolecular Polymerisation of Perylene Diimide Amphiphiles by Seeded Growth under Kinetic Control. Chemistry 2018; 24:15556-15565. [DOI: 10.1002/chem.201801424] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Indexed: 11/10/2022]
Affiliation(s)
| | - Xiaoming He
- School of Chemistry University of Bristol Cantock's Close Bristol BS8 1TS UK
- School of Chemical Science and Engineering Tongji University 1239 Siping Rd. Shanghai 200092 China
| | - Henry E. Symons
- School of Chemistry University of Bristol Cantock's Close Bristol BS8 1TS UK
| | - Robert L. Harniman
- School of Chemistry University of Bristol Cantock's Close Bristol BS8 1TS UK
| | - Charl F. J. Faul
- School of Chemistry University of Bristol Cantock's Close Bristol BS8 1TS UK
| | - Ian Manners
- School of Chemistry University of Bristol Cantock's Close Bristol BS8 1TS UK
| |
Collapse
|
8
|
Lyu X, Xiao A, Zhang W, Hou P, Gu K, Tang Z, Pan H, Wu F, Shen Z, Fan XH. Head-Tail Asymmetry as the Determining Factor in the Formation of Polymer Cubosomes or Hexasomes in a Rod-Coil Amphiphilic Block Copolymer. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201804401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Xiaolin Lyu
- Beijing National Laboratory for Molecular Sciences; Key Laboratory of Polymer Chemistry and Physics of Ministry of Education; Center for Soft Matter Science and Engineering; College of Chemistry and Molecular Engineering; Peking University; Beijing 100871 China
| | - Anqi Xiao
- Beijing National Laboratory for Molecular Sciences; Key Laboratory of Polymer Chemistry and Physics of Ministry of Education; Center for Soft Matter Science and Engineering; College of Chemistry and Molecular Engineering; Peking University; Beijing 100871 China
| | - Wei Zhang
- Beijing National Laboratory for Molecular Sciences; Key Laboratory of Polymer Chemistry and Physics of Ministry of Education; Center for Soft Matter Science and Engineering; College of Chemistry and Molecular Engineering; Peking University; Beijing 100871 China
| | - Pingping Hou
- Beijing National Laboratory for Molecular Sciences; Key Laboratory of Polymer Chemistry and Physics of Ministry of Education; Center for Soft Matter Science and Engineering; College of Chemistry and Molecular Engineering; Peking University; Beijing 100871 China
| | - Kehua Gu
- Beijing National Laboratory for Molecular Sciences; Key Laboratory of Polymer Chemistry and Physics of Ministry of Education; Center for Soft Matter Science and Engineering; College of Chemistry and Molecular Engineering; Peking University; Beijing 100871 China
| | - Zhehao Tang
- Beijing National Laboratory for Molecular Sciences; Key Laboratory of Polymer Chemistry and Physics of Ministry of Education; Center for Soft Matter Science and Engineering; College of Chemistry and Molecular Engineering; Peking University; Beijing 100871 China
| | - Hongbing Pan
- Beijing National Laboratory for Molecular Sciences; Key Laboratory of Polymer Chemistry and Physics of Ministry of Education; Center for Soft Matter Science and Engineering; College of Chemistry and Molecular Engineering; Peking University; Beijing 100871 China
| | - Fan Wu
- Beijing National Laboratory for Molecular Sciences; Key Laboratory of Polymer Chemistry and Physics of Ministry of Education; Center for Soft Matter Science and Engineering; College of Chemistry and Molecular Engineering; Peking University; Beijing 100871 China
| | - Zhihao Shen
- Beijing National Laboratory for Molecular Sciences; Key Laboratory of Polymer Chemistry and Physics of Ministry of Education; Center for Soft Matter Science and Engineering; College of Chemistry and Molecular Engineering; Peking University; Beijing 100871 China
| | - Xing-He Fan
- Beijing National Laboratory for Molecular Sciences; Key Laboratory of Polymer Chemistry and Physics of Ministry of Education; Center for Soft Matter Science and Engineering; College of Chemistry and Molecular Engineering; Peking University; Beijing 100871 China
| |
Collapse
|
9
|
Lyu X, Xiao A, Zhang W, Hou P, Gu K, Tang Z, Pan H, Wu F, Shen Z, Fan XH. Head-Tail Asymmetry as the Determining Factor in the Formation of Polymer Cubosomes or Hexasomes in a Rod-Coil Amphiphilic Block Copolymer. Angew Chem Int Ed Engl 2018; 57:10132-10136. [DOI: 10.1002/anie.201804401] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Revised: 05/29/2018] [Indexed: 02/03/2023]
Affiliation(s)
- Xiaolin Lyu
- Beijing National Laboratory for Molecular Sciences; Key Laboratory of Polymer Chemistry and Physics of Ministry of Education; Center for Soft Matter Science and Engineering; College of Chemistry and Molecular Engineering; Peking University; Beijing 100871 China
| | - Anqi Xiao
- Beijing National Laboratory for Molecular Sciences; Key Laboratory of Polymer Chemistry and Physics of Ministry of Education; Center for Soft Matter Science and Engineering; College of Chemistry and Molecular Engineering; Peking University; Beijing 100871 China
| | - Wei Zhang
- Beijing National Laboratory for Molecular Sciences; Key Laboratory of Polymer Chemistry and Physics of Ministry of Education; Center for Soft Matter Science and Engineering; College of Chemistry and Molecular Engineering; Peking University; Beijing 100871 China
| | - Pingping Hou
- Beijing National Laboratory for Molecular Sciences; Key Laboratory of Polymer Chemistry and Physics of Ministry of Education; Center for Soft Matter Science and Engineering; College of Chemistry and Molecular Engineering; Peking University; Beijing 100871 China
| | - Kehua Gu
- Beijing National Laboratory for Molecular Sciences; Key Laboratory of Polymer Chemistry and Physics of Ministry of Education; Center for Soft Matter Science and Engineering; College of Chemistry and Molecular Engineering; Peking University; Beijing 100871 China
| | - Zhehao Tang
- Beijing National Laboratory for Molecular Sciences; Key Laboratory of Polymer Chemistry and Physics of Ministry of Education; Center for Soft Matter Science and Engineering; College of Chemistry and Molecular Engineering; Peking University; Beijing 100871 China
| | - Hongbing Pan
- Beijing National Laboratory for Molecular Sciences; Key Laboratory of Polymer Chemistry and Physics of Ministry of Education; Center for Soft Matter Science and Engineering; College of Chemistry and Molecular Engineering; Peking University; Beijing 100871 China
| | - Fan Wu
- Beijing National Laboratory for Molecular Sciences; Key Laboratory of Polymer Chemistry and Physics of Ministry of Education; Center for Soft Matter Science and Engineering; College of Chemistry and Molecular Engineering; Peking University; Beijing 100871 China
| | - Zhihao Shen
- Beijing National Laboratory for Molecular Sciences; Key Laboratory of Polymer Chemistry and Physics of Ministry of Education; Center for Soft Matter Science and Engineering; College of Chemistry and Molecular Engineering; Peking University; Beijing 100871 China
| | - Xing-He Fan
- Beijing National Laboratory for Molecular Sciences; Key Laboratory of Polymer Chemistry and Physics of Ministry of Education; Center for Soft Matter Science and Engineering; College of Chemistry and Molecular Engineering; Peking University; Beijing 100871 China
| |
Collapse
|
10
|
Xu Q, Huang T, Li S, Li K, Li C, Liu Y, Wang Y, Yu C, Zhou Y. Emulsion‐Assisted Polymerization‐Induced Hierarchical Self‐Assembly of Giant Sea Urchin‐like Aggregates on a Large Scale. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201802833] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Qingsong Xu
- School of Chemistry and Chemical EngineeringState Key Laboratory of Metal Matrix CompositesShanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Tong Huang
- School of Chemistry and Chemical EngineeringState Key Laboratory of Metal Matrix CompositesShanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Shanlong Li
- School of Chemistry and Chemical EngineeringState Key Laboratory of Metal Matrix CompositesShanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Ke Li
- School of Chemistry and Chemical EngineeringState Key Laboratory of Metal Matrix CompositesShanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Chuanlong Li
- School of Chemistry and Chemical EngineeringState Key Laboratory of Metal Matrix CompositesShanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Yannan Liu
- School of Chemistry and Chemical EngineeringState Key Laboratory of Metal Matrix CompositesShanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Yuling Wang
- School of Chemistry and Chemical EngineeringState Key Laboratory of Metal Matrix CompositesShanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Chunyang Yu
- School of Chemistry and Chemical EngineeringState Key Laboratory of Metal Matrix CompositesShanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Yongfeng Zhou
- School of Chemistry and Chemical EngineeringState Key Laboratory of Metal Matrix CompositesShanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| |
Collapse
|
11
|
Xu Q, Huang T, Li S, Li K, Li C, Liu Y, Wang Y, Yu C, Zhou Y. Emulsion‐Assisted Polymerization‐Induced Hierarchical Self‐Assembly of Giant Sea Urchin‐like Aggregates on a Large Scale. Angew Chem Int Ed Engl 2018; 57:8043-8047. [DOI: 10.1002/anie.201802833] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 05/02/2018] [Indexed: 12/12/2022]
Affiliation(s)
- Qingsong Xu
- School of Chemistry and Chemical EngineeringState Key Laboratory of Metal Matrix CompositesShanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Tong Huang
- School of Chemistry and Chemical EngineeringState Key Laboratory of Metal Matrix CompositesShanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Shanlong Li
- School of Chemistry and Chemical EngineeringState Key Laboratory of Metal Matrix CompositesShanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Ke Li
- School of Chemistry and Chemical EngineeringState Key Laboratory of Metal Matrix CompositesShanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Chuanlong Li
- School of Chemistry and Chemical EngineeringState Key Laboratory of Metal Matrix CompositesShanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Yannan Liu
- School of Chemistry and Chemical EngineeringState Key Laboratory of Metal Matrix CompositesShanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Yuling Wang
- School of Chemistry and Chemical EngineeringState Key Laboratory of Metal Matrix CompositesShanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Chunyang Yu
- School of Chemistry and Chemical EngineeringState Key Laboratory of Metal Matrix CompositesShanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Yongfeng Zhou
- School of Chemistry and Chemical EngineeringState Key Laboratory of Metal Matrix CompositesShanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| |
Collapse
|
12
|
Boott CE, Nazemi A, Manners I. Synthetische kovalente und nichtkovalente zweidimensionale Materialien. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201502009] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Charlotte E. Boott
- School of Chemistry, University of Bristol, Bristol, BS8 1TS (Großbritannien)
| | - Ali Nazemi
- School of Chemistry, University of Bristol, Bristol, BS8 1TS (Großbritannien)
| | - Ian Manners
- School of Chemistry, University of Bristol, Bristol, BS8 1TS (Großbritannien)
| |
Collapse
|
13
|
Synthetic Covalent and Non-Covalent 2D Materials. Angew Chem Int Ed Engl 2015; 54:13876-94. [DOI: 10.1002/anie.201502009] [Citation(s) in RCA: 140] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 05/18/2015] [Indexed: 11/07/2022]
|
14
|
Huang Q, Yang B, Liu H, Zhao Y, Du J. Silkworm cocoons by cylinders self-assembled from H-shaped alternating polymer brushes. Polym Chem 2015. [DOI: 10.1039/c4py01484g] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
We report a novel silkworm cocoon-like nanostructure based on the 3D hierarchical self-assembly of cylinders which are spontaneously formed by an H-shaped polymer brush comprising a disulfide-bridged spacer and two brushes with alternating PEG and PCL side chains. Crystalline of PCL between adjacent cylinders bridges cylinders.
Collapse
Affiliation(s)
- Qiutong Huang
- School of Materials Science and Engineering
- Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education
- Tongji University
- Shanghai
- China
| | - Bo Yang
- School of Materials Science and Engineering
- Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education
- Tongji University
- Shanghai
- China
| | - Huanhuan Liu
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
| | - Youliang Zhao
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
| | - Jianzhong Du
- School of Materials Science and Engineering
- Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education
- Tongji University
- Shanghai
- China
| |
Collapse
|