1
|
Mohammadkhani L, Heravi MM. Applications of Transition-Metal-Catalyzed Asymmetric Allylic Substitution in Total Synthesis of Natural Products: An Update. CHEM REC 2020; 21:29-68. [PMID: 33206466 DOI: 10.1002/tcr.202000086] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 10/21/2020] [Accepted: 10/22/2020] [Indexed: 01/14/2023]
Abstract
Metal-catalyzed asymmetric allylic substitution (AAS) reaction is one of the most synthetically useful reactions catalyzed by metal complexes for the formation of carbon-carbon and carbon-heteroatom bonds. It comprises the substitution of allylic substrates with a wide range of nucleophiles or SN 2'-type allylic substitution, which results in the formation of the above-mentioned bonds with high levels of enantioselective induction. AAS reaction tolerates a broad range of functional groups, thus has been successfully applied in the asymmetric synthesis of a wide range of optically pure compounds. This reaction has been extensively used in the total synthesis of several complex molecules, especially natural products. In this review, we try to highlight the applications of metal (Pd, Ir, Mo, or Cu)-catalyzed AAS reaction in the total synthesis of the biologically active natural products, as a key step, updating the subject from 2003 till date.
Collapse
Affiliation(s)
- Leyla Mohammadkhani
- Department of Chemistry, School of Sciences, Alzahra University Vanak, Tehran, Iran
| | - Majid M Heravi
- Department of Chemistry, School of Sciences, Alzahra University Vanak, Tehran, Iran
| |
Collapse
|
2
|
Delayre B, Piemontesi C, Wang Q, Zhu J. TiCl
3
‐Mediated Synthesis of 2,3,3‐Trisubstituted Indolenines: Total Synthesis of (+)‐1,2‐Dehydroaspidospermidine, (+)‐Condyfoline, and (−)‐Tubifoline. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202005380] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Bastien Delayre
- Laboratory of Synthesis and Natural Products Institute of Chemical Sciences and Engineering Ecole Polytechnique Fédérale de Lausanne EPFL-SB-ISIC-LSPN, BCH 5304 1015 Lausanne Switzerland
| | - Cyril Piemontesi
- Laboratory of Synthesis and Natural Products Institute of Chemical Sciences and Engineering Ecole Polytechnique Fédérale de Lausanne EPFL-SB-ISIC-LSPN, BCH 5304 1015 Lausanne Switzerland
| | - Qian Wang
- Laboratory of Synthesis and Natural Products Institute of Chemical Sciences and Engineering Ecole Polytechnique Fédérale de Lausanne EPFL-SB-ISIC-LSPN, BCH 5304 1015 Lausanne Switzerland
| | - Jieping Zhu
- Laboratory of Synthesis and Natural Products Institute of Chemical Sciences and Engineering Ecole Polytechnique Fédérale de Lausanne EPFL-SB-ISIC-LSPN, BCH 5304 1015 Lausanne Switzerland
| |
Collapse
|
3
|
Delayre B, Piemontesi C, Wang Q, Zhu J. TiCl
3
‐Mediated Synthesis of 2,3,3‐Trisubstituted Indolenines: Total Synthesis of (+)‐1,2‐Dehydroaspidospermidine, (+)‐Condyfoline, and (−)‐Tubifoline. Angew Chem Int Ed Engl 2020; 59:13990-13997. [DOI: 10.1002/anie.202005380] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Indexed: 01/08/2023]
Affiliation(s)
- Bastien Delayre
- Laboratory of Synthesis and Natural Products Institute of Chemical Sciences and Engineering Ecole Polytechnique Fédérale de Lausanne EPFL-SB-ISIC-LSPN, BCH 5304 1015 Lausanne Switzerland
| | - Cyril Piemontesi
- Laboratory of Synthesis and Natural Products Institute of Chemical Sciences and Engineering Ecole Polytechnique Fédérale de Lausanne EPFL-SB-ISIC-LSPN, BCH 5304 1015 Lausanne Switzerland
| | - Qian Wang
- Laboratory of Synthesis and Natural Products Institute of Chemical Sciences and Engineering Ecole Polytechnique Fédérale de Lausanne EPFL-SB-ISIC-LSPN, BCH 5304 1015 Lausanne Switzerland
| | - Jieping Zhu
- Laboratory of Synthesis and Natural Products Institute of Chemical Sciences and Engineering Ecole Polytechnique Fédérale de Lausanne EPFL-SB-ISIC-LSPN, BCH 5304 1015 Lausanne Switzerland
| |
Collapse
|
4
|
Zhu K, Hu S, Liu M, Peng H, Chen F. Access to a Key Building Block for the Prostaglandin Family via Stereocontrolled Organocatalytic Baeyer–Villiger Oxidation. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201902371] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Kejie Zhu
- Engineering Center of Catalysis and Synthesis for Chiral MoleculesDepartment of ChemistryFudan University Shanghai 200433 China
- Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Molecules Shanghai 200433 China
| | - Sha Hu
- Engineering Center of Catalysis and Synthesis for Chiral MoleculesDepartment of ChemistryFudan University Shanghai 200433 China
- Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Molecules Shanghai 200433 China
| | - Minjie Liu
- Engineering Center of Catalysis and Synthesis for Chiral MoleculesDepartment of ChemistryFudan University Shanghai 200433 China
- Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Molecules Shanghai 200433 China
| | - Haihui Peng
- Engineering Center of Catalysis and Synthesis for Chiral MoleculesDepartment of ChemistryFudan University Shanghai 200433 China
- Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Molecules Shanghai 200433 China
| | - Fen‐Er Chen
- Engineering Center of Catalysis and Synthesis for Chiral MoleculesDepartment of ChemistryFudan University Shanghai 200433 China
- Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Molecules Shanghai 200433 China
| |
Collapse
|
5
|
Zhu K, Hu S, Liu M, Peng H, Chen FE. Access to a Key Building Block for the Prostaglandin Family via Stereocontrolled Organocatalytic Baeyer-Villiger Oxidation. Angew Chem Int Ed Engl 2019; 58:9923-9927. [PMID: 30983061 DOI: 10.1002/anie.201902371] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Indexed: 12/20/2022]
Abstract
A new protocol for the construction of a crucial bicyclic lactone of prostaglandins using a stereocontrolled organocatalytic Baeyer-Villiger (B-V) oxidation was developed. The key B-V oxidation of a racemic cyclobutanone derivative with aqueous hydrogen peroxide has enabled an early-stage construction of a bicyclic lactone skeleton in high enantiomeric excess (up to 95 %). The generated bicyclic lactone is fully primed with two desired stereocenters and enabled the synthesis of the entire family of prostaglandins according to Corey's route. Furthermore, the reactivity and enantioselectivity of B-V oxidation of racemic bicyclic cyclobutanones were evaluated and 90-99 % ee was obtained, representing one of the most efficient routes to chiral lactones. This study further facilitates the synthesis of prostaglandins and chiral lactone-containing natural products to promote drug discovery.
Collapse
Affiliation(s)
- Kejie Zhu
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai, 200433, China.,Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Molecules, Shanghai, 200433, China
| | - Sha Hu
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai, 200433, China.,Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Molecules, Shanghai, 200433, China
| | - Minjie Liu
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai, 200433, China.,Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Molecules, Shanghai, 200433, China
| | - Haihui Peng
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai, 200433, China.,Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Molecules, Shanghai, 200433, China
| | - Fen-Er Chen
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai, 200433, China.,Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Molecules, Shanghai, 200433, China
| |
Collapse
|
6
|
Pelšs A, Gandhamsetty N, Smith JR, Mailhol D, Silvi M, Watson AJA, Perez-Powell I, Prévost S, Schützenmeister N, Moore PR, Aggarwal VK. Reoptimization of the Organocatalyzed Double Aldol Domino Process to a Key Enal Intermediate and Its Application to the Total Synthesis of Δ 12 -Prostaglandin J 3. Chemistry 2018; 24:9542-9545. [PMID: 29774967 PMCID: PMC6055629 DOI: 10.1002/chem.201802498] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Indexed: 12/15/2022]
Abstract
Re-investigation of the l-proline catalyzed double aldol cascade dimerization of succinaldehyde for the synthesis of a key bicyclic enal intermediate, pertinent in the field of stereoselective prostaglandin synthesis, is reported. The yield of this process has been more than doubled, from 14 % to a 29 % isolated yield on a multi-gram scale (32 % NMR yield), through conducting a detailed study of the reaction solvent, temperature, and concentration, as well as a catalyst screen. The synthetic utility of this enal intermediate has been further demonstrated through the total synthesis of Δ12 -prostaglandin J3 , a compound with known anti-leukemic properties.
Collapse
Affiliation(s)
- Andrejs Pelšs
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, U.K
| | | | - James R Smith
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, U.K
| | - Damien Mailhol
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, U.K
| | - Mattia Silvi
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, U.K
| | - Andrew J A Watson
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, U.K
| | - Isabel Perez-Powell
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, U.K
| | - Sébastien Prévost
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, U.K
| | - Nina Schützenmeister
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, U.K
| | - Peter R Moore
- Pharmaceutical Technology and Development, AstraZeneca, Silk Road Business Park, Charter Way, Macclesfield, SK10 2NA, U.K
| | - Varinder K Aggarwal
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, U.K
| |
Collapse
|
7
|
Nicolaou KC, Pulukuri KK, Yu R, Rigol S, Heretsch P, Grove CI, Hale CRH, ElMarrouni A. Total Synthesis of Δ12-Prostaglandin J3: Evolution of Synthetic Strategies to a Streamlined Process. Chemistry 2016; 22:8559-70. [DOI: 10.1002/chem.201601449] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Indexed: 01/12/2023]
Affiliation(s)
- K. C. Nicolaou
- Department of Chemistry; BioScience Research Collaborative; Rice University; 6100 Main Street Houston TX 77005 USA
| | - Kiran Kumar Pulukuri
- Department of Chemistry; BioScience Research Collaborative; Rice University; 6100 Main Street Houston TX 77005 USA
| | - Ruocheng Yu
- Department of Chemistry; BioScience Research Collaborative; Rice University; 6100 Main Street Houston TX 77005 USA
| | - Stephan Rigol
- Department of Chemistry; BioScience Research Collaborative; Rice University; 6100 Main Street Houston TX 77005 USA
| | - Philipp Heretsch
- Department of Chemistry; BioScience Research Collaborative; Rice University; 6100 Main Street Houston TX 77005 USA
| | - Charles I. Grove
- Department of Chemistry; BioScience Research Collaborative; Rice University; 6100 Main Street Houston TX 77005 USA
| | - Christopher R. H. Hale
- Department of Chemistry; BioScience Research Collaborative; Rice University; 6100 Main Street Houston TX 77005 USA
- Department of Chemistry; The Scripps Research Institute; 10550 North Torrey Pines Road La Jolla CA 92037 USA
| | - Abdelatif ElMarrouni
- Department of Chemistry; BioScience Research Collaborative; Rice University; 6100 Main Street Houston TX 77005 USA
| |
Collapse
|
8
|
Holec C, Neufeld K, Pietruszka J. P450 BM3 Monooxygenase as an Efficient NAD(P)H-Oxidase for Regeneration of Nicotinamide Cofactors in ADH-Catalysed Preparative Scale Biotransformations. Adv Synth Catal 2016. [DOI: 10.1002/adsc.201600241] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
9
|
Holec C, Sandkuhl D, Rother D, Kroutil W, Pietruszka J. Chemoenzymatic Synthesis towards the Active Agent Travoprost. ChemCatChem 2015. [DOI: 10.1002/cctc.201500587] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Claudia Holec
- Institute for Bioorganic Chemistry; Heinrich-Heine-University of Düsseldorf at the Forschungszentrum Jülich; Stetternicher Forst, Geb. 15.8 52426 Jülich Germany
| | - Diana Sandkuhl
- Institute for Bioorganic Chemistry; Heinrich-Heine-University of Düsseldorf at the Forschungszentrum Jülich; Stetternicher Forst, Geb. 15.8 52426 Jülich Germany
| | - Dörte Rother
- Institute of Bio- and Geosciences (IBG-1: Biotechnology); Forschungszentrum Jülich; 52426 Jülich Germany
| | - Wolfgang Kroutil
- Institute of Chemistry, Organic and Bioorganic Chemistry, University of Graz; Heinrichstrasse 28 8010 Graz Austria
| | - Jörg Pietruszka
- Institute for Bioorganic Chemistry; Heinrich-Heine-University of Düsseldorf at the Forschungszentrum Jülich; Stetternicher Forst, Geb. 15.8 52426 Jülich Germany
- Institute of Bio- and Geosciences (IBG-1: Biotechnology); Forschungszentrum Jülich; 52426 Jülich Germany
| |
Collapse
|