1
|
Huh S, Saunders GJ, Yudin AK. Single Atom Ring Contraction of Peptide Macrocycles Using Cornforth Rearrangement. Angew Chem Int Ed Engl 2023; 62:e202214729. [PMID: 36346911 DOI: 10.1002/anie.202214729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 11/09/2022]
Abstract
Site-selective transformations of densely functionalized scaffolds have been a topic of intense interest in chemical synthesis. Herein we have repurposed the rarely used Cornforth rearrangement as a tool to effect a single-atom ring contraction in cyclic peptide backbones. Investigations into the kinetics of the rearrangement were carried out to understand the impact of electronic factors, ring size, and linker type on the reaction efficiency. Conformational analysis was undertaken and showed how subtle differences in the peptide backbone result in substrate-dependent reaction profiles. This methodology can now be used to perform conformation-activity studies. The chemistry also offers an opportunity to install building blocks that are not compatible with traditional C-to-N iterative synthesis of macrocycle precursors.
Collapse
Affiliation(s)
- Sungjoon Huh
- Davenport Research Laboratories, University of Toronto, 80 St. George St, Toronto, Ontario, M5S 3H6, Canada
| | - George J Saunders
- Davenport Research Laboratories, University of Toronto, 80 St. George St, Toronto, Ontario, M5S 3H6, Canada
| | - Andrei K Yudin
- Davenport Research Laboratories, University of Toronto, 80 St. George St, Toronto, Ontario, M5S 3H6, Canada
| |
Collapse
|
2
|
Saunders GJ, Yudin AK. Property‐Driven Development of Passively Permeable Macrocyclic Scaffolds Using Heterocycles**. Angew Chem Int Ed Engl 2022; 61:e202206866. [DOI: 10.1002/anie.202206866] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Indexed: 12/18/2022]
Affiliation(s)
- George J. Saunders
- Davenport Research Laboratories University of Toronto 80 St. George St Toronto Ontario, M5S 3H6 Canada
| | - Andrei K. Yudin
- Davenport Research Laboratories University of Toronto 80 St. George St Toronto Ontario, M5S 3H6 Canada
| |
Collapse
|
3
|
Saunders GJ, Yudin AK. Property‐Driven Development of Passively Permeable Macrocyclic Scaffolds using Heterocycles. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202206866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- George J. Saunders
- University of Toronto - St George Campus: University of Toronto Chemistry 80 St George St M5S3H6 Toronto CANADA
| | - Andrei K. Yudin
- University of Toronto Department of Chemistry 80 St. George Street M5S 3H6 Toronto CANADA
| |
Collapse
|
4
|
Hoang HN, Hill TA, Fairlie DP. Connecting Hydrophobic Surfaces in Cyclic Peptides Increases Membrane Permeability. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202012643] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Huy N. Hoang
- Division of Chemistry and Structural Biology and ARC Centre of Excellence for Innovations in Peptide and Protein Science Institute for Molecular Bioscience The University of Queensland Brisbane QLD 4072 Australia
| | - Timothy A. Hill
- Division of Chemistry and Structural Biology and ARC Centre of Excellence for Innovations in Peptide and Protein Science Institute for Molecular Bioscience The University of Queensland Brisbane QLD 4072 Australia
| | - David P. Fairlie
- Division of Chemistry and Structural Biology and ARC Centre of Excellence for Innovations in Peptide and Protein Science Institute for Molecular Bioscience The University of Queensland Brisbane QLD 4072 Australia
- ARC Centre of Excellence in Advanced Molecular Imaging Institute for Molecular Bioscience The University of Queensland Brisbane QLD 4072 Australia
| |
Collapse
|
5
|
Hoang HN, Hill TA, Fairlie DP. Connecting Hydrophobic Surfaces in Cyclic Peptides Increases Membrane Permeability. Angew Chem Int Ed Engl 2021; 60:8385-8390. [PMID: 33185961 DOI: 10.1002/anie.202012643] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 11/04/2020] [Indexed: 12/16/2022]
Abstract
N- or C-methylation in natural and synthetic cyclic peptides can increase membrane permeability, but it remains unclear why this happens in some cases but not others. Here we compare three-dimensional structures for cyclic peptides from six families, including isomers differing only in the location of an N- or Cα-methyl substituent. We show that a single methyl group only increases membrane permeability when it connects or expands hydrophobic surface patches. Positional isomers, with the same molecular weight, hydrogen bond donors/acceptors, rotatable bonds, calculated LogP, topological polar surface area, and total hydrophobic surface area, can have different membrane permeabilities that correlate with the size of the largest continuous hydrophobic surface patch. These results illuminate a key local molecular determinant of membrane permeability.
Collapse
Affiliation(s)
- Huy N Hoang
- Division of Chemistry and Structural Biology and ARC Centre of Excellence for Innovations in Peptide and Protein Science, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Timothy A Hill
- Division of Chemistry and Structural Biology and ARC Centre of Excellence for Innovations in Peptide and Protein Science, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - David P Fairlie
- Division of Chemistry and Structural Biology and ARC Centre of Excellence for Innovations in Peptide and Protein Science, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia.,ARC Centre of Excellence in Advanced Molecular Imaging, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia
| |
Collapse
|
6
|
Buckton LK, Rahimi MN, McAlpine SR. Cyclic Peptides as Drugs for Intracellular Targets: The Next Frontier in Peptide Therapeutic Development. Chemistry 2020; 27:1487-1513. [PMID: 32875673 DOI: 10.1002/chem.201905385] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 08/26/2020] [Indexed: 12/18/2022]
Abstract
Developing macrocyclic peptides that can reach intracellular targets is a significant challenge. This review discusses the most recent strategies used to develop cell permeable cyclic peptides that maintain binding to their biological target inside the cell. Macrocyclic peptides are unique from small molecules because traditional calculated physical properties are unsuccessful for predicting cell membrane permeability. Peptide synthesis and experimental membrane permeability is the only strategy that effectively differentiates between cell permeable and cell impermeable molecules. Discussed are chemical strategies, including backbone N-methylation and stereochemical changes, which have produced molecular scaffolds with improved cell permeability. However, these improvements often come at the expense of biological activity as chemical modifications alter the peptide conformation, frequently impacting the compound's ability to bind to the target. Highlighted is the most promising approach, which involves side-chain alterations that improve cell permeability without impact binding events.
Collapse
Affiliation(s)
- Laura K Buckton
- Department of Chemistry, University of New South Wales, Sydney, Gate 2 High Street, SEB 701, Kensington, NSW, 2052, Australia
| | - Marwa N Rahimi
- Department of Chemistry, University of New South Wales, Sydney, Gate 2 High Street, SEB 701, Kensington, NSW, 2052, Australia
| | - Shelli R McAlpine
- Department of Chemistry, University of New South Wales, Sydney, Gate 2 High Street, SEB 701, Kensington, NSW, 2052, Australia
| |
Collapse
|
7
|
Yin X, Li W, Yu B. Synthesis of Pashinintide A, a Natural Cyclic Hexapeptide Supposedly Capable of Forming a Complex with Sucrose. ASIAN J ORG CHEM 2020. [DOI: 10.1002/ajoc.201900663] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Xuejian Yin
- State Key Laboratory of Bioorganic and Natural Products Chemistry Shanghai Institute of Organic ChemistryUniversity of Chinese Academy of Sciences Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Wei Li
- Department of Medicinal ChemistryChina Pharmaceutical University 639 Longmian Avenue, Nanjing Jiangsu 211198 China
| | - Biao Yu
- State Key Laboratory of Bioorganic and Natural Products Chemistry Shanghai Institute of Organic ChemistryUniversity of Chinese Academy of Sciences Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| |
Collapse
|
8
|
Liu J, Cheng X, Tian X, Guan D, Ao J, Wu Z, Huang W, Le Z. Design and synthesis of novel dual-cyclic RGD peptides for αvβ3 integrin targeting. Bioorg Med Chem Lett 2019; 29:896-900. [DOI: 10.1016/j.bmcl.2019.01.043] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 01/30/2019] [Accepted: 01/31/2019] [Indexed: 01/02/2023]
|
9
|
Räder AFB, Weinmüller M, Reichart F, Schumacher-Klinger A, Merzbach S, Gilon C, Hoffman A, Kessler H. Orally Active Peptides: Is There a Magic Bullet? Angew Chem Int Ed Engl 2018; 57:14414-14438. [DOI: 10.1002/anie.201807298] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Indexed: 12/16/2022]
Affiliation(s)
- Andreas F. B. Räder
- Technische Universität München; Department Chemie; Institute for Advanced Study; Lichtenbergstrasse 4 85748 Garching Germany
| | - Michael Weinmüller
- Technische Universität München; Department Chemie; Institute for Advanced Study; Lichtenbergstrasse 4 85748 Garching Germany
| | - Florian Reichart
- Technische Universität München; Department Chemie; Institute for Advanced Study; Lichtenbergstrasse 4 85748 Garching Germany
| | | | - Shira Merzbach
- The Hebrew University of Jerusalem; Institutes of Chemistry and Drug Research; Israel
| | - Chaim Gilon
- The Hebrew University of Jerusalem; Institutes of Chemistry and Drug Research; Israel
| | - Amnon Hoffman
- The Hebrew University of Jerusalem; Institutes of Chemistry and Drug Research; Israel
| | - Horst Kessler
- Technische Universität München; Department Chemie; Institute for Advanced Study; Lichtenbergstrasse 4 85748 Garching Germany
| |
Collapse
|
10
|
Räder AFB, Weinmüller M, Reichart F, Schumacher-Klinger A, Merzbach S, Gilon C, Hoffman A, Kessler H. Oral aktive Peptide: Gibt es ein Patentrezept? Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201807298] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Andreas F. B. Räder
- Technische Universität München; Department Chemie; Institute for Advanced Study; Lichtenbergstraße 4 85748 Garching Deutschland
| | - Michael Weinmüller
- Technische Universität München; Department Chemie; Institute for Advanced Study; Lichtenbergstraße 4 85748 Garching Deutschland
| | - Florian Reichart
- Technische Universität München; Department Chemie; Institute for Advanced Study; Lichtenbergstraße 4 85748 Garching Deutschland
| | | | - Shira Merzbach
- Hebrew University of Jerusalem; Institutes of Chemistry and Drug Research; Israel
| | - Chaim Gilon
- Hebrew University of Jerusalem; Institutes of Chemistry and Drug Research; Israel
| | - Amnon Hoffman
- Hebrew University of Jerusalem; Institutes of Chemistry and Drug Research; Israel
| | - Horst Kessler
- Technische Universität München; Department Chemie; Institute for Advanced Study; Lichtenbergstraße 4 85748 Garching Deutschland
| |
Collapse
|
11
|
Peraro L, Kritzer JA. Emerging Methods and Design Principles for Cell-Penetrant Peptides. Angew Chem Int Ed Engl 2018; 57:11868-11881. [PMID: 29740917 PMCID: PMC7184558 DOI: 10.1002/anie.201801361] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 04/24/2018] [Indexed: 12/12/2022]
Abstract
Biomolecules such as antibodies, proteins, and peptides are important tools for chemical biology and leads for drug development. They have been used to inhibit a variety of extracellular proteins, but accessing intracellular proteins has been much more challenging. In this review, we discuss diverse chemical approaches that have yielded cell-penetrant peptides and identify three distinct strategies: masking backbone amides, guanidinium group patterning, and amphipathic patterning. We summarize a growing number of large data sets, which are starting to reveal more specific design guidelines for each strategy. We also discuss advantages and disadvantages of current methods for quantifying cell penetration. Finally, we provide an overview of best-odds approaches for applying these new methods and design principles to optimize cytosolic penetration for a given bioactive peptide.
Collapse
Affiliation(s)
- Leila Peraro
- Department of Chemistry, Tufts University, Medford, Massachusetts, 02155, USA
| | - Joshua A Kritzer
- Department of Chemistry, Tufts University, Medford, Massachusetts, 02155, USA
| |
Collapse
|
12
|
Peraro L, Kritzer JA. Neue Methoden und Designprinzipien für zellgängige Peptide. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201801361] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Leila Peraro
- Department of Chemistry Tufts University Medford Massachusetts 02155 USA
| | - Joshua A. Kritzer
- Department of Chemistry Tufts University Medford Massachusetts 02155 USA
| |
Collapse
|
13
|
Kaldas SJ, Yudin AK. Achieving Skeletal Diversity in Peptide Macrocycles through The Use of Heterocyclic Grafts. Chemistry 2018; 24:7074-7082. [DOI: 10.1002/chem.201705418] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Indexed: 11/11/2022]
Affiliation(s)
- Sherif J. Kaldas
- Davenport Research Laboratories, Department of Chemistry; University of Toronto; 80 St. George St. Toronto ON M5S 3H6 Canada
| | - Andrei K. Yudin
- Davenport Research Laboratories, Department of Chemistry; University of Toronto; 80 St. George St. Toronto ON M5S 3H6 Canada
| |
Collapse
|
14
|
Mizuno A, Matsui K, Shuto S. From Peptides to Peptidomimetics: A Strategy Based on the Structural Features of Cyclopropane. Chemistry 2017. [PMID: 28632330 DOI: 10.1002/chem.201702119] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Peptidomimetics, non-natural mimicries of bioactive peptides, comprise an important class of drug molecules. The essence of the peptidomimetic design is to mimic the key conformation assumed by the bioactive peptides upon binding to their targets. Regulation of the conformation of peptidomimetics is important not only to enhance target binding affinity and selectivity, but also to confer cell-membrane permeability for targeting protein-protein interactions in cells. The rational design of peptidomimetics with suitable three-dimensional structures is challenging, however, due to the inherent flexibility of peptides and their dynamic conformational changes upon binding to the target biomolecules. In this Minireview, a three-dimensional structural diversity-oriented strategy based on the characteristic structural features of cyclopropane to address this challenging issue in peptidomimetic chemistry is described.
Collapse
Affiliation(s)
- Akira Mizuno
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo, Hokkaido, 060-0812, Japan
| | - Kouhei Matsui
- Pharmaceutical Research Center, Shionogi & Co., Ltd., 3-1-1, Futaba-cho, Toyonaka, Osaka, 561-0825, Japan
| | - Satoshi Shuto
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo, Hokkaido, 060-0812, Japan.,Center for Research and Education on Drug Discovery, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo, Hokkaido, 060-0812, Japan
| |
Collapse
|
15
|
Matsui K, Kido Y, Watari R, Kashima Y, Yoshida Y, Shuto S. Highly Conformationally Restricted Cyclopropane Tethers with Three-Dimensional Structural Diversity Drastically Enhance the Cell Permeability of Cyclic Peptides. Chemistry 2016; 23:3034-3041. [PMID: 27878880 DOI: 10.1002/chem.201604946] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2016] [Indexed: 12/21/2022]
Abstract
The conformation of cyclic peptides is closely related to their physicochemical and biological properties, but their rational design to obtain a conformation with the desired properties is difficult. Herein, we present a new strategy by using conformationally restricted cyclopropane tethers (CPTs) to control the conformation and improve the cell permeability of cyclic peptides regardless of the amino acid sequence. Newly designed cis- or trans-CPTs with three-dimensional structural diversity were introduced into a model cyclic peptide, and the relationship between the conformation of the cyclic peptides and their cell permeability was analyzed. Peptides containing a CPT exhibited conformational diversity due to the characteristic steric feature of cyclopropane, among which peptides containing a CPT, cis-NfCf had remarkably higher cell permeability than peptides containing other CPTs-even superior to that of cyclosporine A, a known permeable cyclic peptide.
Collapse
Affiliation(s)
- Kouhei Matsui
- Pharmaceutical Research Center, Shionogi & Co., Ltd., 3-1-1, Futaba-cho, Toyonaka-shi, Osaka, 561-0825, Japan
| | - Yasuto Kido
- Pharmaceutical Research Center, Shionogi & Co., Ltd., 3-1-1, Futaba-cho, Toyonaka-shi, Osaka, 561-0825, Japan
| | - Ryosuke Watari
- Pharmaceutical Research Center, Shionogi & Co., Ltd., 3-1-1, Futaba-cho, Toyonaka-shi, Osaka, 561-0825, Japan
| | - Yousuke Kashima
- Pharmaceutical Research Center, Shionogi & Co., Ltd., 3-1-1, Futaba-cho, Toyonaka-shi, Osaka, 561-0825, Japan
| | - Yutaka Yoshida
- Pharmaceutical Research Center, Shionogi & Co., Ltd., 3-1-1, Futaba-cho, Toyonaka-shi, Osaka, 561-0825, Japan
| | - Satoshi Shuto
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo, 060-0812, Japan
| |
Collapse
|
16
|
Maolanon AR, Kristensen HME, Leman LJ, Ghadiri MR, Olsen CA. Natural and Synthetic Macrocyclic Inhibitors of the Histone Deacetylase Enzymes. Chembiochem 2016; 18:5-49. [DOI: 10.1002/cbic.201600519] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Indexed: 12/18/2022]
Affiliation(s)
- Alex R. Maolanon
- Center for Biopharmaceuticals and; Department of Drug Design and Pharmacology; University of Copenhagen; Universitetsparken 2 2100 Copenhagen Denmark
| | - Helle M. E. Kristensen
- Center for Biopharmaceuticals and; Department of Drug Design and Pharmacology; University of Copenhagen; Universitetsparken 2 2100 Copenhagen Denmark
| | - Luke J. Leman
- Department of Chemistry; The Skaggs Institute for Chemical Biology; The Scripps Research Institute; 10550 North Torrey Pines Road La Jolla CA 92037 USA
| | - M. Reza Ghadiri
- Department of Chemistry; The Skaggs Institute for Chemical Biology; The Scripps Research Institute; 10550 North Torrey Pines Road La Jolla CA 92037 USA
| | - Christian A. Olsen
- Center for Biopharmaceuticals and; Department of Drug Design and Pharmacology; University of Copenhagen; Universitetsparken 2 2100 Copenhagen Denmark
| |
Collapse
|
17
|
Fouché M, Schäfer M, Berghausen J, Desrayaud S, Blatter M, Piéchon P, Dix I, Martin Garcia A, Roth HJ. Design and Development of a Cyclic Decapeptide Scaffold with Suitable Properties for Bioavailability and Oral Exposure. ChemMedChem 2016; 11:1048-59. [DOI: 10.1002/cmdc.201600082] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Revised: 03/09/2016] [Indexed: 12/18/2022]
Affiliation(s)
- Marianne Fouché
- Global Discovery Chemistry/Macrocycles; Novartis Institute for BioMedical Research; Basel 4002 Switzerland
| | - Michael Schäfer
- Global Discovery Chemistry/CADD; Novartis Institute for BioMedical Research; Basel 4002 Switzerland
| | - Jörg Berghausen
- Metabolism and Pharmacokinetics; Novartis Institute for BioMedical Research; Basel 4002 Switzerland
| | - Sandrine Desrayaud
- Metabolism and Pharmacokinetics; Novartis Institute for BioMedical Research; Basel 4002 Switzerland
| | - Markus Blatter
- Global Discovery Chemistry/Analytics (NMR); Novartis Institute for BioMedical Research; Basel 4002 Switzerland
| | - Philippe Piéchon
- Global Discovery Chemistry/Analytics (Crystallography); Novartis Institute for BioMedical Research; Basel 4002 Switzerland
| | - Ina Dix
- Global Discovery Chemistry/Analytics (Crystallography); Novartis Institute for BioMedical Research; Basel 4002 Switzerland
| | - Aimar Martin Garcia
- The University of the Basque Country-Euskal Herriko Unibertsitatea; Campus de Leioa 48949 Leioa Spain
| | - Hans-Jörg Roth
- Global Discovery Chemistry/Macrocycles; Novartis Institute for BioMedical Research; Basel 4002 Switzerland
| |
Collapse
|
18
|
Cardote TAF, Ciulli A. Cyclic and Macrocyclic Peptides as Chemical Tools To Recognise Protein Surfaces and Probe Protein-Protein Interactions. ChemMedChem 2015; 11:787-94. [PMID: 26563831 PMCID: PMC4848765 DOI: 10.1002/cmdc.201500450] [Citation(s) in RCA: 133] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Indexed: 01/25/2023]
Abstract
Targeting protein surfaces and protein-protein interactions (PPIs) with small molecules is a frontier goal of chemical biology and provides attractive therapeutic opportunities in drug discovery. The molecular properties of protein surfaces, including their shallow features and lack of deep binding pockets, pose significant challenges, and as a result have proved difficult to target. Peptides are ideal candidates for this mission due to their ability to closely mimic many structural features of protein interfaces. However, their inherently low intracellular stability and permeability and high in vivo clearance have thus far limited their biological applications. One way to improve these properties is to constrain the secondary structure of linear peptides by cyclisation. Herein we review various classes of cyclic and macrocyclic peptides as chemical probes of protein surfaces and modulators of PPIs. The growing interest in this area and recent advances provide evidence of the potential of developing peptide-like molecules that specifically target these interactions.
Collapse
Affiliation(s)
- Teresa A F Cardote
- Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, James Black Centre, Dow Street, Dundee, DD1 5EH, UK
| | - Alessio Ciulli
- Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, James Black Centre, Dow Street, Dundee, DD1 5EH, UK.
| |
Collapse
|
19
|
Nielsen DS, Lohman RJ, Hoang HN, Hill TA, Jones A, Lucke AJ, Fairlie DP. Flexibility versus Rigidity for Orally Bioavailable Cyclic Hexapeptides. Chembiochem 2015; 16:2289-93. [DOI: 10.1002/cbic.201500441] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Indexed: 01/09/2023]
Affiliation(s)
- Daniel S. Nielsen
- Division of Chemistry and Structural Biology; University of Queensland; Brisbane QLD 4072 Australia
| | - Rink-Jan Lohman
- Division of Chemistry and Structural Biology; University of Queensland; Brisbane QLD 4072 Australia
| | - Huy N. Hoang
- Division of Chemistry and Structural Biology; University of Queensland; Brisbane QLD 4072 Australia
| | - Timothy A. Hill
- Division of Chemistry and Structural Biology; University of Queensland; Brisbane QLD 4072 Australia
| | - Alun Jones
- Division of Chemistry and Structural Biology; University of Queensland; Brisbane QLD 4072 Australia
| | - Andrew J. Lucke
- Division of Chemistry and Structural Biology; University of Queensland; Brisbane QLD 4072 Australia
| | - David P. Fairlie
- Division of Chemistry and Structural Biology; University of Queensland; Brisbane QLD 4072 Australia
| |
Collapse
|
20
|
Marelli UK, Ovadia O, Frank AO, Chatterjee J, Gilon C, Hoffman A, Kessler H. cis-Peptide Bonds: A Key for Intestinal Permeability of Peptides? Chemistry 2015; 21:15148-52. [DOI: 10.1002/chem.201501600] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Indexed: 12/12/2022]
|
21
|
Bionda N, Fasan R. Ribosomal Synthesis of Natural-Product-Like Bicyclic Peptides in Escherichia coli. Chembiochem 2015; 16:2011-6. [PMID: 26179106 DOI: 10.1002/cbic.201500179] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2015] [Indexed: 12/28/2022]
Abstract
Methods to access natural-product-like macrocyclic peptides can disclose new opportunities for the exploration of this important structural class for chemical biology and drug discovery applications. Here, the scope and mechanism of a novel strategy for directing the biosynthesis of thioether-bridged bicyclic peptides in bacterial cells was investigated. This method entails split intein-catalyzed head-to-tail cyclization of a ribosomally produced precursor peptide, combined with inter-side-chain crosslinking through a genetically encoded cysteine-reactive amino acid. This strategy could be successfully applied to achieve formation of structurally diverse bicyclic peptides with high efficiency and selectivity in Escherichia coli. Insights into the sequence of reactions underlying the peptide bicyclization process were gained from time-course experiments. Finally, the potential utility of this methodology toward the discovery of macrocyclic peptides with enhanced functional properties was demonstrated through the isolation of a bicyclic peptide with sub-micromolar affinity for streptavidin.
Collapse
Affiliation(s)
- Nina Bionda
- Department of Chemistry, University of Rochester, RC Box 270216, Rochester, NY, 14627, USA
| | - Rudi Fasan
- Department of Chemistry, University of Rochester, RC Box 270216, Rochester, NY, 14627, USA.
| |
Collapse
|