1
|
Ortigosa-Pascual L, Leiding T, Linse S, Pálmadóttir T. Photo-Induced Cross-Linking of Unmodified α-Synuclein Oligomers. ACS Chem Neurosci 2023; 14:3192-3205. [PMID: 37621159 PMCID: PMC10485903 DOI: 10.1021/acschemneuro.3c00326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 08/14/2023] [Indexed: 08/26/2023] Open
Abstract
Photo-induced cross-linking of unmodified proteins (PICUP) has been used in the past to study size distributions of protein assemblies. PICUP may, for example, overcome the significant experimental challenges related to the transient nature, heterogeneity, and low concentration of amyloid protein oligomers relative to monomeric and fibrillar species. In the current study, a reaction chamber was designed, produced, and used for PICUP reaction optimization in terms of reaction conditions and lighting time from ms to s. These efforts make the method more reproducible and accessible and enable the use of shorter reaction times compared to previous studies. We applied the optimized method to an α-synuclein aggregation time course to monitor the relative concentration and size distribution of oligomers over time. The data are compared to the time evolution of the fibril mass concentration, as monitored by thioflavin T fluorescence. At all time points, the smaller the oligomer, the higher its concentration observed after PICUP. Moreover, the total oligomer concentration is highest at short aggregation times, and the decline over time follows the disappearance of monomers. We can therefore conclude that these oligomers form from monomers.
Collapse
Affiliation(s)
- Lei Ortigosa-Pascual
- Department of Biochemistry and Structural
Biology, Lund University, 221 00 Lund, Sweden
| | - Thom Leiding
- Department of Biochemistry and Structural
Biology, Lund University, 221 00 Lund, Sweden
| | - Sara Linse
- Department of Biochemistry and Structural
Biology, Lund University, 221 00 Lund, Sweden
| | - Tinna Pálmadóttir
- Department of Biochemistry and Structural
Biology, Lund University, 221 00 Lund, Sweden
| |
Collapse
|
2
|
Hu D, Zhao W, Zhu Y, Ai H, Kang B. Bead‐Level Characterization of Early‐Stage Amyloid β
42
Aggregates: Nuclei and Ionic Concentration Effects. Chemistry 2017; 23:16257-16273. [PMID: 28792099 DOI: 10.1002/chem.201702388] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Indexed: 01/12/2023]
Affiliation(s)
- Dingkun Hu
- Shandong Provincial Key Laboratory of Fluorine Chemistry and Chemical Materials School of Chemistry and Chemical Engineering University of Jinan No. 336, West Road of Nan Xinzhuang Jinan Shandong 250022 P. R. China
| | - Wei Zhao
- Shandong Provincial Key Laboratory of Fluorine Chemistry and Chemical Materials School of Chemistry and Chemical Engineering University of Jinan No. 336, West Road of Nan Xinzhuang Jinan Shandong 250022 P. R. China
| | - Yong Zhu
- Hospital in University of Jinan University of Jinan No. 336, West Road of Nan Xinzhuang Jinan Shandong 250022 P. R. China
| | - Hongqi Ai
- Shandong Provincial Key Laboratory of Fluorine Chemistry and Chemical Materials School of Chemistry and Chemical Engineering University of Jinan No. 336, West Road of Nan Xinzhuang Jinan Shandong 250022 P. R. China
| | - Baotao Kang
- Shandong Provincial Key Laboratory of Fluorine Chemistry and Chemical Materials School of Chemistry and Chemical Engineering University of Jinan No. 336, West Road of Nan Xinzhuang Jinan Shandong 250022 P. R. China
| |
Collapse
|
3
|
Ruiz J, Boehringer R, Grogg M, Raya J, Schirer A, Crucifix C, Hellwig P, Schultz P, Torbeev V. Covalent Tethering and Residues with Bulky Hydrophobic Side Chains Enable Self-Assembly of Distinct Amyloid Structures. Chembiochem 2016; 17:2274-2285. [PMID: 27717158 DOI: 10.1002/cbic.201600440] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Indexed: 11/10/2022]
Abstract
Polymorphism is a common property of amyloid fibers that complicates their detailed structural and functional studies. Here we report experiments illustrating the chemical principles that enable the formation of amyloid polymorphs with distinct stoichiometric composition. Using appropriate covalent tethering we programmed self-assembly of a model peptide corresponding to the [20-41] fragment of human β2-microglobulin into fibers with either trimeric or dimeric amyloid cores. Using a set of biophysical and biochemical methods we demonstrated their distinct structural, morphological, and templating properties. Furthermore, we showed that supramolecular approaches in which the peptide is modified with bulky substituents can also be applied to modulate the formation of different fiber polymorphs. Such strategies, when applied to disease-related peptides and proteins, will greatly help in the evaluation of the biological properties of structurally distinct amyloids.
Collapse
Affiliation(s)
- Jérémy Ruiz
- ISIS (Institut de Science et d'Ingénierie Supramoléculaires) and, icFRC (International Center for Frontier Research in Chemistry), University of Strasbourg, CNRS-, UMR 7006, 8 allée Gaspard Monge, 67083, Strasbourg, France
| | - Régis Boehringer
- ISIS (Institut de Science et d'Ingénierie Supramoléculaires) and, icFRC (International Center for Frontier Research in Chemistry), University of Strasbourg, CNRS-, UMR 7006, 8 allée Gaspard Monge, 67083, Strasbourg, France
| | - Marcel Grogg
- ISIS (Institut de Science et d'Ingénierie Supramoléculaires) and, icFRC (International Center for Frontier Research in Chemistry), University of Strasbourg, CNRS-, UMR 7006, 8 allée Gaspard Monge, 67083, Strasbourg, France
| | - Jésus Raya
- Membrane Biophysics and NMR, Institute of Chemistry, University of Strasbourg, CNRS-, UMR 7177, 4 rue Blaise Pascal, 67008, Strasbourg, France
| | - Alicia Schirer
- Laboratory of Bioelectrochemistry and Spectroscopy, University of Strasbourg, CNRS-, UMR 7140, 1 rue Blaise Pascal, 67070, Strasbourg, France
| | - Corinne Crucifix
- Department of Integrated Structural Biology, IGBMC (Institut de Génétique et de Biologie Moléculaire et Cellulaire), INSERM-U964, University of Strasbourg, CNRS-, UMR 7104, 1 rue Laurent Fries, 67404, Illkirch, France
| | - Petra Hellwig
- Laboratory of Bioelectrochemistry and Spectroscopy, University of Strasbourg, CNRS-, UMR 7140, 1 rue Blaise Pascal, 67070, Strasbourg, France
| | - Patrick Schultz
- Department of Integrated Structural Biology, IGBMC (Institut de Génétique et de Biologie Moléculaire et Cellulaire), INSERM-U964, University of Strasbourg, CNRS-, UMR 7104, 1 rue Laurent Fries, 67404, Illkirch, France
| | - Vladimir Torbeev
- ISIS (Institut de Science et d'Ingénierie Supramoléculaires) and, icFRC (International Center for Frontier Research in Chemistry), University of Strasbourg, CNRS-, UMR 7006, 8 allée Gaspard Monge, 67083, Strasbourg, France
| |
Collapse
|
4
|
Adler J, Baumann M, Voigt B, Scheidt HA, Bhowmik D, Häupl T, Abel B, Madhu PK, Balbach J, Maiti S, Huster D. A Detailed Analysis of the Morphology of Fibrils of Selectively Mutated Amyloid β (1-40). Chemphyschem 2016; 17:2744-53. [PMID: 27224205 DOI: 10.1002/cphc.201600413] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Indexed: 01/08/2023]
Abstract
A small library of rationally designed amyloid β [Aβ(1-40)] peptide variants is generated, and the morphology of their fibrils is studied. In these molecules, the structurally important hydrophobic contact between phenylalanine 19 (F19) and leucine 34 (L34) is systematically mutated to introduce defined physical forces to act as specific internal constraints on amyloid formation. This Aβ(1-40) peptide library is used to study the fibril morphology of these variants by employing a comprehensive set of biophysical techniques including solution and solid-state NMR spectroscopy, AFM, fluorescence correlation spectroscopy, and XRD. Overall, the findings demonstrate that the introduction of significant local physical perturbations of a crucial early folding contact of Aβ(1-40) only results in minor alterations of the fibrillar morphology. The thermodynamically stable structure of mature Aβ fibrils proves to be relatively robust against the introduction of significantly altered molecular interaction patterns due to point mutations. This underlines that amyloid fibril formation is a highly generic process in protein misfolding that results in the formation of the thermodynamically most stable cross-β structure.
Collapse
Affiliation(s)
- Juliane Adler
- Institute for Medical Physics and Biophysics, Leipzig University, Härtelstrasse 16-18, 04107, Leipzig, Germany
| | - Monika Baumann
- Institute of Physics, Biophysics, Martin Luther University Halle-Wittenberg, B.-Heimann-Strasse 7, 06120, Halle, Germany
| | - Bruno Voigt
- Institute of Physics, Biophysics, Martin Luther University Halle-Wittenberg, B.-Heimann-Strasse 7, 06120, Halle, Germany
| | - Holger A Scheidt
- Institute for Medical Physics and Biophysics, Leipzig University, Härtelstrasse 16-18, 04107, Leipzig, Germany
| | - Debanjan Bhowmik
- Department of Chemistry, Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai, 400 005, India.,Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208-3113, USA
| | - Tilmann Häupl
- Leibniz Institute of Surface Modification (IOM), Permoserstrasse 15, 04318, Leipzig, Germany.,Wilhelm-Ostwald Institute of Physical and Theoretical Chemistry, Leipzig University, Linnéstrasse 3, 04103, Leipzig, Germany
| | - Bernd Abel
- Wilhelm-Ostwald Institute of Physical and Theoretical Chemistry, Leipzig University, Linnéstrasse 3, 04103, Leipzig, Germany
| | - Perunthiruthy K Madhu
- Department of Chemistry, Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai, 400 005, India.,TIFR Centre for Interdisciplinary Sciences, Tata Institute of Fundamental Research, Leipzig University, 21 Brundavan Colony, Narsingi, Hyderabad, 500075, India
| | - Jochen Balbach
- Institute of Physics, Biophysics, Martin Luther University Halle-Wittenberg, B.-Heimann-Strasse 7, 06120, Halle, Germany
| | - Sudipta Maiti
- Department of Chemistry, Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai, 400 005, India
| | - Daniel Huster
- Institute for Medical Physics and Biophysics, Leipzig University, Härtelstrasse 16-18, 04107, Leipzig, Germany. .,Department of Chemistry, Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai, 400 005, India.
| |
Collapse
|
5
|
Barz B, Strodel B. Understanding Amyloid-β Oligomerization at the Molecular Level: The Role of the Fibril Surface. Chemistry 2016; 22:8768-72. [PMID: 27135646 DOI: 10.1002/chem.201601701] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Indexed: 12/11/2022]
Abstract
The aggregation of the amyloid β-peptide into fibrils is a complex process that involves mechanisms such as primary and secondary nucleation, fibril elongation and fibril fragmentation. Some of these processes generate neurotoxic Aβ oligomers, which are involved in the development of Alzheimer's disease. Recent experimental studies have emphasized the role of the fibril as a catalytic surface for the production of highly toxic oligomers during secondary nucleation. By using molecular dynamics simulations, we show that it is the hydrophobic fibril region that causes the structural changes required for catalyzing the formation of β-sheet-rich Aβ1-42 oligomers on the fibril surface. These results reveal, for the first time, the molecular basis of the secondary nucleation pathway.
Collapse
Affiliation(s)
- Bogdan Barz
- Institute of Complex Systems: Structural Biochemistry (ICS-6), Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
| | - Birgit Strodel
- Institute of Theoretical and Computational Chemistry, Heinrich Heine University Düsseldorf, Universitätstrasse 1, 40225, Düsseldorf, Germany. , .,Institute of Complex Systems: Structural Biochemistry (ICS-6), Forschungszentrum Jülich GmbH, 52425, Jülich, Germany. ,
| |
Collapse
|
6
|
Nagel-Steger L, Owen MC, Strodel B. An Account of Amyloid Oligomers: Facts and Figures Obtained from Experiments and Simulations. Chembiochem 2016; 17:657-76. [PMID: 26910367 DOI: 10.1002/cbic.201500623] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Indexed: 12/27/2022]
Abstract
The deposition of amyloid in brain tissue in the context of neurodegenerative diseases involves the formation of intermediate species-termed oligomers-of lower molecular mass and with structures that deviate from those of mature amyloid fibrils. Because these oligomers are thought to be primarily responsible for the subsequent disease pathogenesis, the elucidation of their structure is of enormous interest. Nevertheless, because of the high aggregation propensity and the polydispersity of oligomeric species formed by the proteins or peptides in question, the preparation of appropriate samples for high-resolution structural methods has proven to be rather difficult. This is why theoretical approaches have been of particular importance in gaining insights into possible oligomeric structures for some time. Only recently has it been possible to achieve some progress with regard to the experimentally based structural characterization of defined oligomeric species. Here we discuss how theory and experiment are used to determine oligomer structures and what can be done to improve the integration of the two disciplines.
Collapse
Affiliation(s)
- Luitgard Nagel-Steger
- Institute of Complex Systems: Structural Biochemistry (ICS-6), Forschungszentrum Jülich, 52425, Jülich, Germany.,Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Universitätstrasse 1, 40225, Düsseldorf, Germany
| | - Michael C Owen
- Institute of Complex Systems: Structural Biochemistry (ICS-6), Forschungszentrum Jülich, 52425, Jülich, Germany
| | - Birgit Strodel
- Institute of Complex Systems: Structural Biochemistry (ICS-6), Forschungszentrum Jülich, 52425, Jülich, Germany. .,Institute of Theoretical and Computational Chemistry, Heinrich Heine University Düsseldorf, Universitätstrasse 1, 40225, Düsseldorf, Germany.
| |
Collapse
|
7
|
Shaykhalishahi H, Gauhar A, Wördehoff MM, Grüning CSR, Klein AN, Bannach O, Stoldt M, Willbold D, Härd T, Hoyer W. Contact between the β1 and β2 Segments of α-Synuclein that Inhibits Amyloid Formation. Angew Chem Int Ed Engl 2015; 54:8837-40. [DOI: 10.1002/anie.201503018] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Indexed: 11/09/2022]
|
8
|
Shaykhalishahi H, Gauhar A, Wördehoff MM, Grüning CSR, Klein AN, Bannach O, Stoldt M, Willbold D, Härd T, Hoyer W. Kontakt zwischen den β1- und β2-Segmenten von α-Synuclein inhibiert die Amyloidbildung. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201503018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|