1
|
Gaikwad S, Urban MW. Fluorophilic Sigma(σ)-Lock Self-Healable Copolymers. Angew Chem Int Ed Engl 2024; 63:e202405504. [PMID: 38739414 DOI: 10.1002/anie.202405504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/07/2024] [Accepted: 05/08/2024] [Indexed: 05/14/2024]
Abstract
Although F-Containing molecules and macromolecules are often used in molecular biology to increase the binding with Lewis acidic groups by introducing favorable C-F dipoles, there is virtually no experimental evidence and limited understanding of the nature of these interactions, especially their role in synthetic polymeric materials. These studies elucidate the molecular origin of inter- and intra-Chain interactions responsible for self-healing of F-Containing copolymers composed of pentafluorostyrene and n-butyl acrylate units (p(PFS/nBA). Guided by dynamic surface oscillating force (SOF) and spectroscopic measurements supported by molecular dynamics (MD) simulations, these studies show that the reformation of σ-σ orbitals in -C-F of PFS and CH3CH2- of nBA units enables the recovery of entropic energy via fluorophilic-σ-lock van der Waals forces when PFS/nBA molar ratios are ~50/50. The strength of these interactions determined experimentally for self-healable PFS/nBA compositions is in the order ~0.3 kcal/mol which primarily comes from fluorophilic-σ-lock (~70 %) contributions. These interactions are significantly diminished for non-self-healable counterparts. Strongly polarized -C-F σ orbitals create lateral dipolar forces enhancing the affinity towards -C-H orbitals, facilitating energetically favorable interactions. Entropic recovery driven by non-Covalent bonding offers a valuable tool in designing materials with unique functionalities, particularly self-healable batteries and energy storage devices.
Collapse
Affiliation(s)
- Samruddhi Gaikwad
- Department of Materials Science and Engineering, Clemson University, Clemson, 29634, SC
| | - Marek W Urban
- Department of Materials Science and Engineering, Clemson University, Clemson, 29634, SC
| |
Collapse
|
2
|
Saddique A, Kim JC, Bae J, Cheong IW. Low-temperature, ultra-fast, and recyclable self-healing nanocomposites reinforced with non-solvent silylated modified cellulose nanocrystals. Int J Biol Macromol 2024; 254:127984. [PMID: 37951429 DOI: 10.1016/j.ijbiomac.2023.127984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/30/2023] [Accepted: 11/07/2023] [Indexed: 11/14/2023]
Abstract
Developing polymeric materials with remarkable mechanical properties and fast self-healing performance even at low temperatures is challenging. Herein, the polymeric nanocomposites containing silane-treated cellulose nanocrystals (SCNC) with ultrafast self-healing and exceptional mechanical characteristics were developed even at low temperatures. First, CNC is modified with a cyclic silane coupling agent using an eco-friendly chemical vapor deposition method. The nanocomposite was then fabricated by blending SCNC with matrix prepolymer, prepared from monomers that possess lower critical solution temperature, followed by the inclusion of dibutyltin dilaurate and hexamethylene diisocyanate. The self-healing capability of the novel SCNC/polymer nanocomposites was enhanced remarkably by increasing the content of SCNC (0-3 wt%) and reaching (≥99 %) at temperatures (5 & 25 °C) within <20 min. Moreover, SCNC-3 showed a toughness of (2498 MJ/m3) and SCNC-5 displayed a robust tensile strength of (22.94 ± 0.4 MPa) whereas SCNC-0 exhibited a lower tensile strength (7.4 ± 03 MPa) and toughness of (958 MJ/m3). Additionally, the nanocomposites retain their original mechanical properties after healing at temperatures (5 & 25 °C) owing to the formation of hydrogen bonds via incorporation of the SCNC. These novel SCNC-based self-healable nanocomposites with tunable mechanical properties offer novel insight into preparing damage and temperature-responsive flexible and wearable devices.
Collapse
Affiliation(s)
- Anam Saddique
- Department of Applied Chemistry, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea
| | - Jin Chul Kim
- Department of Specialty Chemicals, Division of Specialty and Bio-based Chemicals Technology, Korea Research Institute of Chemical Technology (KRICT), Ulsan 44412, Republic of Korea.
| | - Jinhye Bae
- Department of NanoEngineering, University of California San Diego, La Jolla, CA 92093, USA; Chemical Engineering Program, University of California San Diego, La Jolla, CA 92093, USA.
| | - In Woo Cheong
- Department of Applied Chemistry, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea.
| |
Collapse
|
3
|
Cellulose nanocrystal nanocomposites capable of low-temperature and fast self-healing performance. Carbohydr Polym 2022; 296:119973. [DOI: 10.1016/j.carbpol.2022.119973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 08/09/2022] [Accepted: 08/10/2022] [Indexed: 11/23/2022]
|
4
|
Zhang C, Lu X, Wang Z, Xia H. Progress in Utilizing Dynamic Bonds to Fabricate Structurally Adaptive Self-Healing, Shape Memory, and Liquid Crystal Polymers. Macromol Rapid Commun 2021; 43:e2100768. [PMID: 34964192 DOI: 10.1002/marc.202100768] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/15/2021] [Indexed: 11/09/2022]
Abstract
Stimuli-responsive structurally dynamic polymers are capable of mimicking the biological systems to adapt themselves to the surrounding environmental changes and subsequently exhibiting a wide range of responses ranging from self-healing to complex shape-morphing. Dynamic self-healing polymers (SHPs), shape-memory polymers (SMPs) and liquid crystal elastomers (LCEs), which are three representative examples of stimuli-responsive structurally dynamic polymers, have been attracting broad and growing interest in recent years because of their potential applications in the fields of electronic skin, sensors, soft robots, artificial muscles, and so on. We review recent advances and challenges in the developments towards dynamic SHPs, SMPs and LCEs, focusing on the chemistry strategies and the dynamic reaction mechanisms that enhance the performances of the materials including self-healing, reprocessing and reprogramming. We compare and discuss the different dynamic chemistries and their mechanisms on the enhanced functions of the materials, where three summary tables are presented: a library of dynamic bonds and the resulting characteristics of the materials. Finally, we provide a critical outline of the unresolved issues and future perspectives on the emerging developments. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Chun Zhang
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu, 610065, China
| | - Xili Lu
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu, 610065, China
| | - Zhanhua Wang
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu, 610065, China
| | - Hesheng Xia
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
5
|
Yoon J, Hou Y, Knoepfel AM, Yang D, Ye T, Zheng L, Yennawar N, Sanghadasa M, Priya S, Wang K. Bio-inspired strategies for next-generation perovskite solar mobile power sources. Chem Soc Rev 2021; 50:12915-12984. [PMID: 34622260 DOI: 10.1039/d0cs01493a] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Smart electronic devices are becoming ubiquitous due to many appealing attributes including portability, long operational time, rechargeability and compatibility with the user-desired form factor. Integration of mobile power sources (MPS) based on photovoltaic technologies with smart electronics will continue to drive improved sustainability and independence. With high efficiency, low cost, flexibility and lightweight features, halide perovskite photovoltaics have become promising candidates for MPS. Realization of these photovoltaic MPS (PV-MPS) with unconventionally extraordinary attributes requires new 'out-of-box' designs. Natural materials have provided promising designing solutions to engineer properties under a broad range of boundary conditions, ranging from molecules, proteins, cells, tissues, apparatus to systems in animals, plants, and humans optimized through billions of years of evolution. Applying bio-inspired strategies in PV-MPS could be biomolecular modification on crystallization at the atomic/meso-scale, bio-structural duplication at the device/system level and bio-mimicking at the functional level to render efficient charge delivery, energy transport/utilization, as well as stronger resistance against environmental stimuli (e.g., self-healing and self-cleaning). In this review, we discuss the bio-inspired/-mimetic structures, experimental models, and working principles, with the goal of revealing physics and bio-microstructures relevant for PV-MPS. Here the emphasis is on identifying the strategies and material designs towards improvement of the performance of emerging halide perovskite PVs and strategizing their bridge to future MPS.
Collapse
Affiliation(s)
- Jungjin Yoon
- Department of Materials Science & Engineering, Pennsylvania State University, University Park, 16802, PA, USA.
| | - Yuchen Hou
- Department of Materials Science & Engineering, Pennsylvania State University, University Park, 16802, PA, USA.
| | - Abbey Marie Knoepfel
- Department of Materials Science & Engineering, Pennsylvania State University, University Park, 16802, PA, USA.
| | - Dong Yang
- Department of Materials Science & Engineering, Pennsylvania State University, University Park, 16802, PA, USA.
| | - Tao Ye
- Department of Materials Science & Engineering, Pennsylvania State University, University Park, 16802, PA, USA.
| | - Luyao Zheng
- Department of Materials Science & Engineering, Pennsylvania State University, University Park, 16802, PA, USA.
| | - Neela Yennawar
- Huck Institute of the Life Sciences, Pennsylvania State University, University Park, 16802, PA, USA
| | - Mohan Sanghadasa
- U.S. Army Combat Capabilities Development Command Aviation & Missile Center, Redstone Arsenal, Alabama, 35898, USA
| | - Shashank Priya
- Department of Materials Science & Engineering, Pennsylvania State University, University Park, 16802, PA, USA.
| | - Kai Wang
- Department of Materials Science & Engineering, Pennsylvania State University, University Park, 16802, PA, USA.
| |
Collapse
|
6
|
|
7
|
Wang S, Liu Q, Li L, Urban MW. Recent Advances in Stimuli-Responsive Commodity Polymers. Macromol Rapid Commun 2021; 42:e2100054. [PMID: 33749047 DOI: 10.1002/marc.202100054] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/19/2021] [Indexed: 12/14/2022]
Abstract
Known for their adaptability to surroundings, capability of transport control of molecules, or the ability of converting one type of energy to another as a result of external or internal stimuli, responsive polymers play a significant role in advancing scientific discoveries that may lead to an array of diverge applications. This review outlines recent advances in the developments of selected commodity polymers equipped with stimuli-responsiveness to temperature, pH, ionic strength, enzyme or glucose levels, carbon dioxide, water, redox agents, electromagnetic radiation, or electric and magnetic fields. Utilized diverse applications ranging from drug delivery to biosensing, dynamic structural components to color-changing coatings, this review focuses on commodity acrylics, epoxies, esters, carbonates, urethanes, and siloxane-based polymers containing responsive elements built into their architecture. In the context of stimuli-responsive chemistries, current technological advances as well as a critical outline of future opportunities and applications are also tackled.
Collapse
Affiliation(s)
- Siyang Wang
- Department of Materials Science and Engineering, Clemson University, Clemson, SC, 29634, USA
| | - Qianhui Liu
- Department of Materials Science and Engineering, Clemson University, Clemson, SC, 29634, USA
| | - Lei Li
- Department of Materials Science and Engineering, Clemson University, Clemson, SC, 29634, USA
| | - Marek W Urban
- Department of Materials Science and Engineering, Clemson University, Clemson, SC, 29634, USA
| |
Collapse
|