1
|
Tilden JAR, Doud EA, Montgomery HR, Maynard HD, Spokoyny AM. Organometallic Chemistry Tools for Building Biologically Relevant Nanoscale Systems. J Am Chem Soc 2024; 146:29989-30003. [PMID: 39468851 DOI: 10.1021/jacs.4c07110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
The recent emergence of organometallic chemistry for modification of biomolecular nanostructures has begun to rewrite the long-standing assumption among practitioners that small-molecule organometallics are fundamentally incompatible with biological systems. This Perspective sets out to clarify some of the existing misconceptions by focusing on the growing organometallic toolbox for biomolecular modification. Specifically, we highlight key organometallic transformations in constructing complex biologically relevant systems on the nanomolecular scale, and the organometallic synthesis of hybrid nanomaterials composed of classical nanomaterial components combined with biologically relevant species. As research progresses, many of the challenges associated with applying organometallic chemistry in this context are rapidly being reassessed. Looking to the future, the growing utility of organometallic transformations will likely make them more ubiquitous in the construction and modification of biomolecular nanostructures.
Collapse
Affiliation(s)
- James A R Tilden
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095, United States
| | - Evan A Doud
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095, United States
| | - Hayden R Montgomery
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095, United States
| | - Heather D Maynard
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095, United States
- California NanoSystems Institute (CNSI), University of California, Los Angeles, 570 Westwood Plaza, Los Angeles, California 90095, United States
| | - Alexander M Spokoyny
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095, United States
- California NanoSystems Institute (CNSI), University of California, Los Angeles, 570 Westwood Plaza, Los Angeles, California 90095, United States
| |
Collapse
|
2
|
Tan Y, Pierrard F, Frédérick R, Riant O. Enhancing Tsuji-Trost deallylation in living cells with an internal-nucleophile coumarin-based probe. RSC Adv 2024; 14:5492-5498. [PMID: 38352674 PMCID: PMC10862660 DOI: 10.1039/d3ra08938j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 01/31/2024] [Indexed: 02/16/2024] Open
Abstract
In recent years, bioorthogonal uncaging reactions have been developed to proceed efficiently under physiological conditions. However, limited progress has been made in the development of protecting groups combining stability under physiological settings with the ability to be quickly removed via bioorthogonal catalysis. Herein, we present a new water-soluble coumarin-derived probe bearing an internal nucleophilic group capable of promoting Tsuji-Trost deallylation under palladium catalysis. This probe can be cleaved by a bioorthogonal palladium complex at a faster rate than the traditional probe, namely N-Alloc-7-amino-4-methylcoumarin. As the deallylation process proved to be efficient in mammalian cells, we envision that this probe may find applications in chemical biology, bioengineering, and medicine.
Collapse
Affiliation(s)
- Yonghua Tan
- Institute of Condensed Matter and Nanosciences (IMCN), Université catholique de Louvain Louvain-la-Neuve 1348 Belgium
- Louvain Drug Research Institute (LDRI), Université catholique de Louvain Brussels B-1200 Belgium
| | - François Pierrard
- Institute of Condensed Matter and Nanosciences (IMCN), Université catholique de Louvain Louvain-la-Neuve 1348 Belgium
- Louvain Drug Research Institute (LDRI), Université catholique de Louvain Brussels B-1200 Belgium
| | - Raphaël Frédérick
- Louvain Drug Research Institute (LDRI), Université catholique de Louvain Brussels B-1200 Belgium
| | - Olivier Riant
- Institute of Condensed Matter and Nanosciences (IMCN), Université catholique de Louvain Louvain-la-Neuve 1348 Belgium
| |
Collapse
|
3
|
Cheng B, Wang C, Hao Y, Wang J, Xia X, Zhang H, He R, Zhang S, Dai P, Chen X. Facile Synthesis of Clickable Unnatural Sugars in the Unprotected and 1,6-Di-O-Acylated Forms for Metabolic Glycan Labeling. Chemistry 2023; 29:e202203054. [PMID: 36422057 DOI: 10.1002/chem.202203054] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/12/2022] [Accepted: 11/23/2022] [Indexed: 11/25/2022]
Abstract
Clickable unnatural sugars have been widely used in studying glycosylation in living systems via the metabolic glycan labelling (MGL) strategy. Partial protection of unnatural sugars by 1,6-di-O-acylation increases the labelling efficiency while avoiding the non-specific S-glyco-modification. Herein, we report the facile synthesis of a series of clickable unnatural sugars in both the unprotected and 1,6-di-O-acylated forms at the ten-gram scale. By evaluation of the labelling specificity, efficiency, and biocompatibility of various 1,6-di-O-acylated sugars for MGL in cell lines and living mice, we demonstrate that 1,6-di-O-propionylated unnatural sugars are optimal chemical reporters for glycan labelling. The synthetic routes developed in this work should facilitate the widespread use of MGL with no artificial S-glyco-modification for investigating the functional roles of glycans.
Collapse
Affiliation(s)
- Bo Cheng
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking-Tsinghua Center for Life Sciences, Synthetic and Functional Biomolecules Center, Key Laboratory of Bioorganic Chemistry and, Molecular Engineering of Ministry of Education, Peking University, Beijing, 100871, P. R. China
| | - Chunting Wang
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking-Tsinghua Center for Life Sciences, Synthetic and Functional Biomolecules Center, Key Laboratory of Bioorganic Chemistry and, Molecular Engineering of Ministry of Education, Peking University, Beijing, 100871, P. R. China
| | - Yi Hao
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking-Tsinghua Center for Life Sciences, Synthetic and Functional Biomolecules Center, Key Laboratory of Bioorganic Chemistry and, Molecular Engineering of Ministry of Education, Peking University, Beijing, 100871, P. R. China
| | - Jiankun Wang
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking-Tsinghua Center for Life Sciences, Synthetic and Functional Biomolecules Center, Key Laboratory of Bioorganic Chemistry and, Molecular Engineering of Ministry of Education, Peking University, Beijing, 100871, P. R. China
| | - Xiaoqian Xia
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking-Tsinghua Center for Life Sciences, Synthetic and Functional Biomolecules Center, Key Laboratory of Bioorganic Chemistry and, Molecular Engineering of Ministry of Education, Peking University, Beijing, 100871, P. R. China
| | - Hao Zhang
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking-Tsinghua Center for Life Sciences, Synthetic and Functional Biomolecules Center, Key Laboratory of Bioorganic Chemistry and, Molecular Engineering of Ministry of Education, Peking University, Beijing, 100871, P. R. China
| | - Rundong He
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking-Tsinghua Center for Life Sciences, Synthetic and Functional Biomolecules Center, Key Laboratory of Bioorganic Chemistry and, Molecular Engineering of Ministry of Education, Peking University, Beijing, 100871, P. R. China
| | - Shaoran Zhang
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking-Tsinghua Center for Life Sciences, Synthetic and Functional Biomolecules Center, Key Laboratory of Bioorganic Chemistry and, Molecular Engineering of Ministry of Education, Peking University, Beijing, 100871, P. R. China
| | - Peng Dai
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking-Tsinghua Center for Life Sciences, Synthetic and Functional Biomolecules Center, Key Laboratory of Bioorganic Chemistry and, Molecular Engineering of Ministry of Education, Peking University, Beijing, 100871, P. R. China
| | - Xing Chen
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking-Tsinghua Center for Life Sciences, Synthetic and Functional Biomolecules Center, Key Laboratory of Bioorganic Chemistry and, Molecular Engineering of Ministry of Education, Peking University, Beijing, 100871, P. R. China
| |
Collapse
|
4
|
Destito P, Vidal C, López F, Mascareñas JL. Transition Metal‐Promoted Reactions in Aqueous Media and Biological Settings. Chemistry 2021; 27:4789-4816. [DOI: 10.1002/chem.202003927] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/27/2020] [Indexed: 12/19/2022]
Affiliation(s)
- Paolo Destito
- Centro Singular de Investigación en Química Biolóxica e Materiais, Moleculares (CIQUS) and Departamento de Química Orgánica Universidade de Santiago de Compostela 15782 Santiago de Compostela Spain
| | - Cristian Vidal
- Centro Singular de Investigación en Química Biolóxica e Materiais, Moleculares (CIQUS) and Departamento de Química Orgánica Universidade de Santiago de Compostela 15782 Santiago de Compostela Spain
| | - Fernando López
- Centro Singular de Investigación en Química Biolóxica e Materiais, Moleculares (CIQUS) and Departamento de Química Orgánica Universidade de Santiago de Compostela 15782 Santiago de Compostela Spain
- Instituto de Química Orgánica General (CSIC) Juan de la Cierva 3 28006 Madrid Spain
| | - José L. Mascareñas
- Centro Singular de Investigación en Química Biolóxica e Materiais, Moleculares (CIQUS) and Departamento de Química Orgánica Universidade de Santiago de Compostela 15782 Santiago de Compostela Spain
| |
Collapse
|
5
|
Miguel‐Ávila J, Tomás‐Gamasa M, Mascareñas JL. Intracellular Ruthenium-Promoted (2+2+2) Cycloadditions. Angew Chem Int Ed Engl 2020; 59:17628-17633. [PMID: 32627920 PMCID: PMC7689831 DOI: 10.1002/anie.202006689] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Indexed: 02/06/2023]
Abstract
Metal-mediated intracellular reactions are becoming invaluable tools in chemical and cell biology, and hold promise for strongly impacting the field of biomedicine. Most of the reactions reported so far involve either uncaging or redox processes. Demonstrated here for the first time is the viability of performing multicomponent alkyne cycloaromatizations inside live mammalian cells using ruthenium catalysts. Both fully intramolecular and intermolecular cycloadditions of diynes with alkynes are feasible, the latter providing an intracellular synthesis of appealing anthraquinones. The power of the approach is further demonstrated by generating anthraquinone AIEgens (AIE=aggregation induced emission) that otherwise do not go inside cells, and by modifying the intracellular distribution of the products by simply varying the type of ruthenium complex.
Collapse
Affiliation(s)
- Joan Miguel‐Ávila
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS)Departamento de Química OrgánicaUniversidade de Santiago de Compostela15782Santiagode CompostelaSpain
| | - María Tomás‐Gamasa
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS)Departamento de Química OrgánicaUniversidade de Santiago de Compostela15782Santiagode CompostelaSpain
| | - José L. Mascareñas
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS)Departamento de Química OrgánicaUniversidade de Santiago de Compostela15782Santiagode CompostelaSpain
| |
Collapse
|
6
|
|
7
|
Weng C, Shen L, Ang WH. Harnessing Endogenous Formate for Antibacterial Prodrug Activation by in cellulo Ruthenium-Mediated Transfer Hydrogenation Reaction. Angew Chem Int Ed Engl 2020; 59:9314-9318. [PMID: 32141662 DOI: 10.1002/anie.202000173] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 03/01/2020] [Indexed: 01/17/2023]
Abstract
The abundance and evolving pathogenic behavior of bacterial microorganisms give rise to antibiotic tolerance and resistance which pose a danger to global public health. New therapeutic strategies are needed to keep pace with this growing threat. We propose a novel approach for targeting bacteria by harnessing formate, a cell metabolite found only in particular bacterial species, to activate an antibacterial prodrug and selectively inhibit their growth. This strategy is premised on transfer hydrogenation reaction on a biorthogonal substrate utilizing native formate as the hydride source as a means of uncaging an antibacterial prodrug. Using coordination-directed 3-component assembly to prepare a library of 768 unique Ru-Arene Schiff-base complexes, we identified several candidates that efficiently reduced sulfonyl azide functional group in the presence of formate. This strategy paves the way for a new approach of targeted antibacterial therapy by exploiting unique bacterial metabolites.
Collapse
Affiliation(s)
- Cheng Weng
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Linghui Shen
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Wee Han Ang
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore.,NUS Graduate School of Integrative Sciences and Engineering, National University of Singapore, 28 Medical Drive, Singapore, 117456, Singapore
| |
Collapse
|
8
|
Weng C, Shen L, Ang WH. Harnessing Endogenous Formate for Antibacterial Prodrug Activation by
in cellulo
Ruthenium‐Mediated Transfer Hydrogenation Reaction. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202000173] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Cheng Weng
- Department of ChemistryNational University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
| | - Linghui Shen
- Department of ChemistryNational University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
| | - Wee Han Ang
- Department of ChemistryNational University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
- NUS Graduate School of Integrative Sciences and EngineeringNational University of Singapore 28 Medical Drive Singapore 117456 Singapore
| |
Collapse
|
9
|
Abstract
Bioorthogonal reactions that proceed readily under physiological conditions without interference from biomolecules have found widespread application in the life sciences. Complementary to the bioorthogonal reactions that ligate two molecules, reactions that release a molecule or cleave a linker are increasingly attracting interest. Such dissociative bioorthogonal reactions have a broad spectrum of uses, for example, in controlling bio-macromolecule activity, in drug delivery, and in diagnostic assays. This review article summarizes the developed bioorthogonal reactions linked to a release step, outlines representative areas of the applications of such reactions, and discusses aspects that require further improvement.
Collapse
Affiliation(s)
- Julian Tu
- Department of Medicinal Chemistry, University of Utah, 30 S 2000 E, Salt Lake City, Utah, 84112, USA
| | - Minghao Xu
- Department of Medicinal Chemistry, University of Utah, 30 S 2000 E, Salt Lake City, Utah, 84112, USA
| | - Raphael M Franzini
- Department of Medicinal Chemistry, University of Utah, 30 S 2000 E, Salt Lake City, Utah, 84112, USA
| |
Collapse
|
10
|
Adam C, Pérez‐López AM, Hamilton L, Rubio‐Ruiz B, Bray TL, Sieger D, Brennan PM, Unciti‐Broceta A. Bioorthogonal Uncaging of the Active Metabolite of Irinotecan by Palladium-Functionalized Microdevices. Chemistry 2018; 24:16783-16790. [PMID: 30187973 PMCID: PMC6282958 DOI: 10.1002/chem.201803725] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Indexed: 12/20/2022]
Abstract
SN-38, the active metabolite of irinotecan, is released upon liver hydrolysis to mediate potent antitumor activity. Systemic exposure to SN-38, however, also leads to serious side effects. To reduce systemic toxicity by controlling where and when SN-38 is generated, a new prodrug was specifically designed to be metabolically stable and undergo rapid palladium-mediated activation. Blocking the phenolic OH of SN-38 with a 2,6-bis(propargyloxy)benzyl group led to significant reduction of cytotoxic activity (up to 44-fold). Anticancer properties were swiftly restored in the presence of heterogeneous palladium (Pd) catalysts to kill colorectal cancer and glioma cells, proving the efficacy of this novel masking strategy for aromatic hydroxyls. Combination with a Pd-activated 5FU prodrug augmented the antiproliferative potency of the treatment, while displaying no activity in the absence of the Pd source, which illustrates the benefit of achieving controlled release of multiple approved therapeutics-sequentially or simultaneously-by the same bioorthogonal catalyst to increase anticancer activity.
Collapse
Affiliation(s)
- Catherine Adam
- Cancer Research UK Edinburgh Centre, MRC Institute of Genetics and Molecular MedicineUniversity of EdinburghUK
| | - Ana M. Pérez‐López
- Cancer Research UK Edinburgh Centre, MRC Institute of Genetics and Molecular MedicineUniversity of EdinburghUK
| | - Lloyd Hamilton
- Centre for Neurogeneration, The Chancellor's BuildingUniversity of EdinburghUK
| | - Belén Rubio‐Ruiz
- Cancer Research UK Edinburgh Centre, MRC Institute of Genetics and Molecular MedicineUniversity of EdinburghUK
| | - Thomas L. Bray
- Cancer Research UK Edinburgh Centre, MRC Institute of Genetics and Molecular MedicineUniversity of EdinburghUK
| | - Dirk Sieger
- Cancer Research UK Edinburgh Centre, MRC Institute of Genetics and Molecular MedicineUniversity of EdinburghUK
- Centre for Neurogeneration, The Chancellor's BuildingUniversity of EdinburghUK
| | - Paul M. Brennan
- Cancer Research UK Edinburgh Centre, MRC Institute of Genetics and Molecular MedicineUniversity of EdinburghUK
- Centre for Clinical Brain SciencesUniversity of EdinburghUK
| | - Asier Unciti‐Broceta
- Cancer Research UK Edinburgh Centre, MRC Institute of Genetics and Molecular MedicineUniversity of EdinburghUK
| |
Collapse
|
11
|
Bi X, Yin J, Chen Guanbang A, Liu CF. Chemical and Enzymatic Strategies for Bacterial and Mammalian Cell Surface Engineering. Chemistry 2018; 24:8042-8050. [DOI: 10.1002/chem.201705049] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Indexed: 12/11/2022]
Affiliation(s)
- Xiaobao Bi
- School of Biological Sciences; Nanyang Technological University; 60 Nanyang Drive Singapore 637551 Singapore
| | - Juan Yin
- Current address: Program in Neuroscience and behavioural disorders; Duke-NUS Medical School; 8 College Road Singapore 169857 Singapore
| | - Ashley Chen Guanbang
- School of Biological Sciences; Nanyang Technological University; 60 Nanyang Drive Singapore 637551 Singapore
| | - Chuan-Fa Liu
- School of Biological Sciences; Nanyang Technological University; 60 Nanyang Drive Singapore 637551 Singapore
| |
Collapse
|
12
|
Pérez‐López AM, Rubio‐Ruiz B, Sebastián V, Hamilton L, Adam C, Bray TL, Irusta S, Brennan PM, Lloyd‐Jones GC, Sieger D, Santamaría J, Unciti‐Broceta A. Gold-Triggered Uncaging Chemistry in Living Systems. Angew Chem Int Ed Engl 2017; 56:12548-12552. [PMID: 28699691 PMCID: PMC5655737 DOI: 10.1002/anie.201705609] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 07/10/2017] [Indexed: 02/02/2023]
Abstract
Recent advances in bioorthogonal catalysis are increasing the capacity of researchers to manipulate the fate of molecules in complex biological systems. A bioorthogonal uncaging strategy is presented, which is triggered by heterogeneous gold catalysis and facilitates the activation of a structurally diverse range of therapeutics in cancer cell culture. Furthermore, this solid-supported catalytic system enabled locally controlled release of a fluorescent dye into the brain of a zebrafish for the first time, offering a novel way to modulate the activity of bioorthogonal reagents in the most fragile and complex organs.
Collapse
Affiliation(s)
- Ana M. Pérez‐López
- Cancer Research (UK) Edinburgh CentreMRC Institute of Genetics and Molecular MedicineUniversity of EdinburghUK
| | - Belén Rubio‐Ruiz
- Cancer Research (UK) Edinburgh CentreMRC Institute of Genetics and Molecular MedicineUniversity of EdinburghUK
| | - Víctor Sebastián
- Department of Chemical Engineering and Environmental Technology and Institute of Nanosciences of Aragon (INA)University of ZaragozaSpain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN28029MadridSpain
| | - Lloyd Hamilton
- Centre for Neurogeneration, The Chancellor's BuildingUniversity of EdinburghUK
| | - Catherine Adam
- Cancer Research (UK) Edinburgh CentreMRC Institute of Genetics and Molecular MedicineUniversity of EdinburghUK
| | - Thomas L. Bray
- Cancer Research (UK) Edinburgh CentreMRC Institute of Genetics and Molecular MedicineUniversity of EdinburghUK
| | - Silvia Irusta
- Department of Chemical Engineering and Environmental Technology and Institute of Nanosciences of Aragon (INA)University of ZaragozaSpain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN28029MadridSpain
| | - Paul M. Brennan
- Cancer Research (UK) Edinburgh CentreMRC Institute of Genetics and Molecular MedicineUniversity of EdinburghUK
- Centre for Clinical Brain SciencesUniversity of EdinburghUK
| | - Guy C. Lloyd‐Jones
- School of Chemistry, King's Buildings, West Mains RoadUniversity of EdinburghUK
| | - Dirk Sieger
- Centre for Neurogeneration, The Chancellor's BuildingUniversity of EdinburghUK
| | - Jesús Santamaría
- Department of Chemical Engineering and Environmental Technology and Institute of Nanosciences of Aragon (INA)University of ZaragozaSpain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN28029MadridSpain
| | - Asier Unciti‐Broceta
- Cancer Research (UK) Edinburgh CentreMRC Institute of Genetics and Molecular MedicineUniversity of EdinburghUK
| |
Collapse
|
13
|
Pérez‐López AM, Rubio‐Ruiz B, Sebastián V, Hamilton L, Adam C, Bray TL, Irusta S, Brennan PM, Lloyd‐Jones GC, Sieger D, Santamaría J, Unciti‐Broceta A. Gold‐Triggered Uncaging Chemistry in Living Systems. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201705609] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Ana M. Pérez‐López
- Cancer Research (UK) Edinburgh Centre MRC Institute of Genetics and Molecular Medicine University of Edinburgh UK
| | - Belén Rubio‐Ruiz
- Cancer Research (UK) Edinburgh Centre MRC Institute of Genetics and Molecular Medicine University of Edinburgh UK
| | - Víctor Sebastián
- Department of Chemical Engineering and Environmental Technology and Institute of Nanosciences of Aragon (INA) University of Zaragoza Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN 28029 Madrid Spain
| | - Lloyd Hamilton
- Centre for Neurogeneration, The Chancellor's Building University of Edinburgh UK
| | - Catherine Adam
- Cancer Research (UK) Edinburgh Centre MRC Institute of Genetics and Molecular Medicine University of Edinburgh UK
| | - Thomas L. Bray
- Cancer Research (UK) Edinburgh Centre MRC Institute of Genetics and Molecular Medicine University of Edinburgh UK
| | - Silvia Irusta
- Department of Chemical Engineering and Environmental Technology and Institute of Nanosciences of Aragon (INA) University of Zaragoza Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN 28029 Madrid Spain
| | - Paul M. Brennan
- Cancer Research (UK) Edinburgh Centre MRC Institute of Genetics and Molecular Medicine University of Edinburgh UK
- Centre for Clinical Brain Sciences University of Edinburgh UK
| | - Guy C. Lloyd‐Jones
- School of Chemistry, King's Buildings, West Mains Road University of Edinburgh UK
| | - Dirk Sieger
- Centre for Neurogeneration, The Chancellor's Building University of Edinburgh UK
| | - Jesús Santamaría
- Department of Chemical Engineering and Environmental Technology and Institute of Nanosciences of Aragon (INA) University of Zaragoza Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN 28029 Madrid Spain
| | - Asier Unciti‐Broceta
- Cancer Research (UK) Edinburgh Centre MRC Institute of Genetics and Molecular Medicine University of Edinburgh UK
| |
Collapse
|
14
|
Jbara M, Maity SK, Brik A. Palladium in der chemischen Synthese und Modifizierung von Proteinen. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201702370] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Muhammad Jbara
- Schulich Faculty of Chemie; Technion - Israel Institute of Technology; Haifa 3200008 Israel
| | - Suman Kumar Maity
- Schulich Faculty of Chemie; Technion - Israel Institute of Technology; Haifa 3200008 Israel
| | - Ashraf Brik
- Schulich Faculty of Chemie; Technion - Israel Institute of Technology; Haifa 3200008 Israel
| |
Collapse
|
15
|
Jbara M, Maity SK, Brik A. Palladium in the Chemical Synthesis and Modification of Proteins. Angew Chem Int Ed Engl 2017; 56:10644-10655. [DOI: 10.1002/anie.201702370] [Citation(s) in RCA: 116] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Indexed: 01/24/2023]
Affiliation(s)
- Muhammad Jbara
- Schulich Faculty of Chemistry; Technion-Israel Institute of Technology; Haifa 3200008 Israel
| | - Suman Kumar Maity
- Schulich Faculty of Chemistry; Technion-Israel Institute of Technology; Haifa 3200008 Israel
| | - Ashraf Brik
- Schulich Faculty of Chemistry; Technion-Israel Institute of Technology; Haifa 3200008 Israel
| |
Collapse
|
16
|
Tsubokura K, Vong KKH, Pradipta AR, Ogura A, Urano S, Tahara T, Nozaki S, Onoe H, Nakao Y, Sibgatullina R, Kurbangalieva A, Watanabe Y, Tanaka K. In Vivo Gold Complex Catalysis within Live Mice. Angew Chem Int Ed Engl 2017; 56:3579-3584. [PMID: 28198119 DOI: 10.1002/anie.201610273] [Citation(s) in RCA: 116] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 12/14/2016] [Indexed: 11/06/2022]
Abstract
Metal complex catalysis within biological systems is largely limited to cell and bacterial systems. In this work, a glycoalbumin-AuIII complex was designed and developed that enables organ-specific, localized propargyl ester amidation with nearby proteins within live mice. The targeted reactivity can be imaged through the use of Cy7.5- and TAMRA-linked propargyl ester based fluorescent probes. This targeting system could enable the exploitation of other metal catalysis strategies for biomedical and clinical applications.
Collapse
Affiliation(s)
- Kazuki Tsubokura
- Biofunctional Synthetic Chemistry Laboratory, RIKEN, 2-1 Hirosawa, Wako-shi, Saitama, 351-0198, Japan.,Department of Chemistry and Biochemistry, School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo, 169-8555, Japan
| | - Kenward K H Vong
- Biofunctional Synthetic Chemistry Laboratory, RIKEN, 2-1 Hirosawa, Wako-shi, Saitama, 351-0198, Japan
| | - Ambara R Pradipta
- Biofunctional Synthetic Chemistry Laboratory, RIKEN, 2-1 Hirosawa, Wako-shi, Saitama, 351-0198, Japan
| | - Akihiro Ogura
- Biofunctional Synthetic Chemistry Laboratory, RIKEN, 2-1 Hirosawa, Wako-shi, Saitama, 351-0198, Japan
| | - Sayaka Urano
- Biofunctional Synthetic Chemistry Laboratory, RIKEN, 2-1 Hirosawa, Wako-shi, Saitama, 351-0198, Japan
| | - Tsuyoshi Tahara
- RIKEN Center for Life Science Technologies, 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo, 650-0047, Japan
| | - Satoshi Nozaki
- RIKEN Center for Life Science Technologies, 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo, 650-0047, Japan
| | - Hirotaka Onoe
- RIKEN Center for Life Science Technologies, 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo, 650-0047, Japan
| | - Yoichi Nakao
- Department of Chemistry and Biochemistry, School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo, 169-8555, Japan
| | - Regina Sibgatullina
- Biofunctional Chemistry Laboratory, A. Butlerov Institute of Chemistry, Kazan Federal University, 18 Kremlyovskaya Street, Kazan, 420008, Russia
| | - Almira Kurbangalieva
- Biofunctional Chemistry Laboratory, A. Butlerov Institute of Chemistry, Kazan Federal University, 18 Kremlyovskaya Street, Kazan, 420008, Russia
| | - Yasuyoshi Watanabe
- RIKEN Center for Life Science Technologies, 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo, 650-0047, Japan
| | - Katsunori Tanaka
- Biofunctional Synthetic Chemistry Laboratory, RIKEN, 2-1 Hirosawa, Wako-shi, Saitama, 351-0198, Japan.,Biofunctional Chemistry Laboratory, A. Butlerov Institute of Chemistry, Kazan Federal University, 18 Kremlyovskaya Street, Kazan, 420008, Russia.,JST-PRESTO, 2-1 Hirosawa, Wako-shi, Saitama, 351-0198, Japan
| |
Collapse
|
17
|
Tsubokura K, Vong KKH, Pradipta AR, Ogura A, Urano S, Tahara T, Nozaki S, Onoe H, Nakao Y, Sibgatullina R, Kurbangalieva A, Watanabe Y, Tanaka K. In Vivo Gold Complex Catalysis within Live Mice. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201610273] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Kazuki Tsubokura
- Biofunctional Synthetic Chemistry Laboratory, RIKEN, 2-1 Hirosawa, Wako-shi Saitama 351-0198 Japan
- Department of Chemistry and Biochemistry, School of Advanced Science and Engineering Waseda University 3-4-1 Okubo, Shinjuku-ku Tokyo 169-8555 Japan
| | - Kenward K. H. Vong
- Biofunctional Synthetic Chemistry Laboratory, RIKEN, 2-1 Hirosawa, Wako-shi Saitama 351-0198 Japan
| | - Ambara R. Pradipta
- Biofunctional Synthetic Chemistry Laboratory, RIKEN, 2-1 Hirosawa, Wako-shi Saitama 351-0198 Japan
| | - Akihiro Ogura
- Biofunctional Synthetic Chemistry Laboratory, RIKEN, 2-1 Hirosawa, Wako-shi Saitama 351-0198 Japan
| | - Sayaka Urano
- Biofunctional Synthetic Chemistry Laboratory, RIKEN, 2-1 Hirosawa, Wako-shi Saitama 351-0198 Japan
| | - Tsuyoshi Tahara
- RIKEN Center for Life Science Technologies 6-7-3 Minatojima-minamimachi, Chuo-ku Kobe Hyogo 650-0047 Japan
| | - Satoshi Nozaki
- RIKEN Center for Life Science Technologies 6-7-3 Minatojima-minamimachi, Chuo-ku Kobe Hyogo 650-0047 Japan
| | - Hirotaka Onoe
- RIKEN Center for Life Science Technologies 6-7-3 Minatojima-minamimachi, Chuo-ku Kobe Hyogo 650-0047 Japan
| | - Yoichi Nakao
- Department of Chemistry and Biochemistry, School of Advanced Science and Engineering Waseda University 3-4-1 Okubo, Shinjuku-ku Tokyo 169-8555 Japan
| | - Regina Sibgatullina
- Biofunctional Chemistry Laboratory A. Butlerov Institute of Chemistry Kazan Federal University 18 Kremlyovskaya Street Kazan 420008 Russia
| | - Almira Kurbangalieva
- Biofunctional Chemistry Laboratory A. Butlerov Institute of Chemistry Kazan Federal University 18 Kremlyovskaya Street Kazan 420008 Russia
| | - Yasuyoshi Watanabe
- RIKEN Center for Life Science Technologies 6-7-3 Minatojima-minamimachi, Chuo-ku Kobe Hyogo 650-0047 Japan
| | - Katsunori Tanaka
- Biofunctional Synthetic Chemistry Laboratory, RIKEN, 2-1 Hirosawa, Wako-shi Saitama 351-0198 Japan
- Biofunctional Chemistry Laboratory A. Butlerov Institute of Chemistry Kazan Federal University 18 Kremlyovskaya Street Kazan 420008 Russia
- JST-PRESTO, 2-1 Hirosawa, Wako-shi Saitama 351-0198 Japan
| |
Collapse
|
18
|
Wratil PR, Horstkorte R, Reutter W. Metabolic Glycoengineering with N-Acyl Side Chain Modified Mannosamines. Angew Chem Int Ed Engl 2016; 55:9482-512. [PMID: 27435524 DOI: 10.1002/anie.201601123] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Indexed: 12/14/2022]
Abstract
In metabolic glycoengineering (MGE), cells or animals are treated with unnatural derivatives of monosaccharides. After entering the cytosol, these sugar analogues are metabolized and subsequently expressed on newly synthesized glycoconjugates. The feasibility of MGE was first discovered for sialylated glycans, by using N-acyl-modified mannosamines as precursor molecules for unnatural sialic acids. Prerequisite is the promiscuity of the enzymes of the Roseman-Warren biosynthetic pathway. These enzymes were shown to tolerate specific modifications of the N-acyl side chain of mannosamine analogues, for example, elongation by one or more methylene groups (aliphatic modifications) or by insertion of reactive groups (bioorthogonal modifications). Unnatural sialic acids are incorporated into glycoconjugates of cells and organs. MGE has intriguing biological consequences for treated cells (aliphatic MGE) and offers the opportunity to visualize the topography and dynamics of sialylated glycans in vitro, ex vivo, and in vivo (bioorthogonal MGE).
Collapse
Affiliation(s)
- Paul R Wratil
- Institut für Laboratoriumsmedizin, Klinische Chemie und Pathobiochemie, Charité-Universitätsmedizin Berlin, Arnimallee 22, 14195, Berlin, Germany.
| | - Rüdiger Horstkorte
- Institut für Physiologische Chemie, Martin-Luther-Universität Halle-Wittenberg, Hollystrasse 1, 06114, Halle, Germany.
| | - Werner Reutter
- Institut für Laboratoriumsmedizin, Klinische Chemie und Pathobiochemie, Charité-Universitätsmedizin Berlin, Arnimallee 22, 14195, Berlin, Germany
| |
Collapse
|
19
|
Wratil PR, Horstkorte R, Reutter W. Metabolisches Glykoengineering mitN-Acyl-Seiten- ketten-modifizierten Mannosaminen. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201601123] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Paul R. Wratil
- Institut für Laboratoriumsmedizin, Klinische Chemie und Pathobiochemie; Charité - Universitätsmedizin Berlin; Arnimallee 22 14195 Berlin Deutschland
| | - Rüdiger Horstkorte
- Institut für Physiologische Chemie; Martin-Luther-Universität Halle-Wittenberg; Hollystraße 1 06114 Halle Deutschland
| | - Werner Reutter
- Institut für Laboratoriumsmedizin, Klinische Chemie und Pathobiochemie; Charité - Universitätsmedizin Berlin; Arnimallee 22 14195 Berlin Deutschland
| |
Collapse
|