1
|
Ge S, Nemiroski A, Mirica KA, Mace CR, Hennek JW, Kumar AA, Whitesides GM. Magnetic Levitation in Chemistry, Materials Science, and Biochemistry. Angew Chem Int Ed Engl 2020; 59:17810-17855. [PMID: 31165560 DOI: 10.1002/anie.201903391] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Indexed: 12/25/2022]
Abstract
All matter has density. The recorded uses of density to characterize matter date back to as early as ca. 250 BC, when Archimedes was believed to have solved "The Puzzle of The King's Crown" using density.[1] Today, measurements of density are used to separate and characterize a range of materials (including cells and organisms), and their chemical and/or physical changes in time and space. This Review describes a density-based technique-magnetic levitation (which we call "MagLev" for simplicity)-developed and used to solve problems in the fields of chemistry, materials science, and biochemistry. MagLev has two principal characteristics-simplicity, and applicability to a wide range of materials-that make it useful for a number of applications (for example, characterization of materials, quality control of manufactured plastic parts, self-assembly of objects in 3D, separation of different types of biological cells, and bioanalyses). Its simplicity and breadth of applications also enable its use in low-resource settings (for example-in economically developing regions-in evaluating water/food quality, and in diagnosing disease).
Collapse
Affiliation(s)
- Shencheng Ge
- Department of Chemistry & Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA, 02138, USA
| | - Alex Nemiroski
- Department of Chemistry & Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA, 02138, USA
| | - Katherine A Mirica
- Department of Chemistry & Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA, 02138, USA
| | - Charles R Mace
- Department of Chemistry & Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA, 02138, USA
| | - Jonathan W Hennek
- Department of Chemistry & Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA, 02138, USA
| | - Ashok A Kumar
- Department of Chemistry & Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA, 02138, USA
| | - George M Whitesides
- Department of Chemistry & Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA, 02138, USA.,Wyss Institute for Biologically Inspired Engineering, Harvard University, 60 Oxford Street, Cambridge, MA, 02138, USA.,Kavli Institute for Bionano Science & Technology, Harvard University, 29 Oxford Street, Cambridge, MA, 02138, USA
| |
Collapse
|
2
|
Ge S, Nemiroski A, Mirica KA, Mace CR, Hennek JW, Kumar AA, Whitesides GM. Magnetische Levitation in Chemie, Materialwissenschaft und Biochemie. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201903391] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Shencheng Ge
- Department of Chemistry & Chemical Biology Harvard University 12 Oxford Street Cambridge MA 02138 USA
| | - Alex Nemiroski
- Department of Chemistry & Chemical Biology Harvard University 12 Oxford Street Cambridge MA 02138 USA
| | - Katherine A. Mirica
- Department of Chemistry & Chemical Biology Harvard University 12 Oxford Street Cambridge MA 02138 USA
| | - Charles R. Mace
- Department of Chemistry & Chemical Biology Harvard University 12 Oxford Street Cambridge MA 02138 USA
| | - Jonathan W. Hennek
- Department of Chemistry & Chemical Biology Harvard University 12 Oxford Street Cambridge MA 02138 USA
| | - Ashok A. Kumar
- Department of Chemistry & Chemical Biology Harvard University 12 Oxford Street Cambridge MA 02138 USA
| | - George M. Whitesides
- Department of Chemistry & Chemical Biology Harvard University 12 Oxford Street Cambridge MA 02138 USA
- Wyss Institute for Biologically Inspired Engineering Harvard University 60 Oxford Street Cambridge MA 02138 USA
- Kavli Institute for Bionano Science & Technology Harvard University 29 Oxford Street Cambridge MA 02138 USA
| |
Collapse
|
3
|
Mou L, Jiang X. Materials for Microfluidic Immunoassays: A Review. Adv Healthc Mater 2017; 6. [PMID: 28322517 DOI: 10.1002/adhm.201601403] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 02/06/2017] [Indexed: 01/07/2023]
Abstract
Conventional immunoassays suffer from at least one of these following limitations: long processing time, high costs, poor user-friendliness, technical complexity, poor sensitivity and specificity. Microfluidics, a technology characterized by the engineered manipulation of fluids in channels with characteristic lengthscale of tens of micrometers, has shown considerable promise for improving immunoassays that could overcome these limitations in medical diagnostics and biology research. The combination of microfluidics and immunoassay can detect biomarkers with faster assay time, reduced volumes of reagents, lower power requirements, and higher levels of integration and automation compared to traditional approaches. This review focuses on the materials-related aspects of the recent advances in microfluidics-based immunoassays for point-of-care (POC) diagnostics of biomarkers. We compare the materials for microfluidic chips fabrication in five aspects: fabrication, integration, function, modification and cost, and describe their advantages and drawbacks. In addition, we review materials for modifying antibodies to improve the performance of the reaction of immunoassay. We also review the state of the art in microfluidic immunoassays POC platforms, from the laboratory to routine clinical practice, and also commercial products in the market. Finally, we discuss the current challenges and future developments in microfluidic immunoassays.
Collapse
Affiliation(s)
- Lei Mou
- Beijing Engineering Research Center for BioNanotechnology and CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety; CAS Center for Excellence in Nanoscience; National Center for NanoScience and Technology; No. 11 Zhongguancun Beiyitiao Beijing 100190 P. R. China
- The University of Chinese Academy of Sciences; 19 A Yuquan Road Shijingshan District Beijing 100049 P. R. China
| | - Xingyu Jiang
- Beijing Engineering Research Center for BioNanotechnology and CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety; CAS Center for Excellence in Nanoscience; National Center for NanoScience and Technology; No. 11 Zhongguancun Beiyitiao Beijing 100190 P. R. China
- The University of Chinese Academy of Sciences; 19 A Yuquan Road Shijingshan District Beijing 100049 P. R. China
| |
Collapse
|
4
|
Sun Y, Huang X, Soh S. Solid-to-Liquid Charge Transfer for Generating Droplets with Tunable Charge. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201604378] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Yajuan Sun
- Department of Chemical and Biomolecular Engineering; National University of Singapore; 4 Engineering Drive 4 Singapore 117585 Singapore
| | - Xu Huang
- Department of Chemical and Biomolecular Engineering; National University of Singapore; 4 Engineering Drive 4 Singapore 117585 Singapore
| | - Siowling Soh
- Department of Chemical and Biomolecular Engineering; National University of Singapore; 4 Engineering Drive 4 Singapore 117585 Singapore
| |
Collapse
|
5
|
Sun Y, Huang X, Soh S. Solid-to-Liquid Charge Transfer for Generating Droplets with Tunable Charge. Angew Chem Int Ed Engl 2016; 55:9956-60. [DOI: 10.1002/anie.201604378] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Indexed: 11/10/2022]
Affiliation(s)
- Yajuan Sun
- Department of Chemical and Biomolecular Engineering; National University of Singapore; 4 Engineering Drive 4 Singapore 117585 Singapore
| | - Xu Huang
- Department of Chemical and Biomolecular Engineering; National University of Singapore; 4 Engineering Drive 4 Singapore 117585 Singapore
| | - Siowling Soh
- Department of Chemical and Biomolecular Engineering; National University of Singapore; 4 Engineering Drive 4 Singapore 117585 Singapore
| |
Collapse
|
6
|
Hu J, Stein A, Bühlmann P. A Disposable Planar Paper-Based Potentiometric Ion-Sensing Platform. Angew Chem Int Ed Engl 2016; 55:7544-7. [DOI: 10.1002/anie.201603017] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2016] [Indexed: 11/08/2022]
Affiliation(s)
- Jinbo Hu
- Department of Chemistry; University of Minnesota; 207 Pleasant St. SE Minneapolis MN 55455 USA
| | - Andreas Stein
- Department of Chemistry; University of Minnesota; 207 Pleasant St. SE Minneapolis MN 55455 USA
| | - Philippe Bühlmann
- Department of Chemistry; University of Minnesota; 207 Pleasant St. SE Minneapolis MN 55455 USA
| |
Collapse
|
7
|
Hu J, Stein A, Bühlmann P. A Disposable Planar Paper-Based Potentiometric Ion-Sensing Platform. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201603017] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Jinbo Hu
- Department of Chemistry; University of Minnesota; 207 Pleasant St. SE Minneapolis MN 55455 USA
| | - Andreas Stein
- Department of Chemistry; University of Minnesota; 207 Pleasant St. SE Minneapolis MN 55455 USA
| | - Philippe Bühlmann
- Department of Chemistry; University of Minnesota; 207 Pleasant St. SE Minneapolis MN 55455 USA
| |
Collapse
|