1
|
Oh JY, Lee Y, Lee TW. Skin-Mountable Functional Electronic Materials for Bio-Integrated Devices. Adv Healthc Mater 2024; 13:e2303797. [PMID: 38368254 DOI: 10.1002/adhm.202303797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/01/2024] [Indexed: 02/19/2024]
Abstract
Skin-mountable electronic materials are being intensively evaluated for use in bio-integrated devices that can mutually interact with the human body. Over the past decade, functional electronic materials inspired by the skin are developed with new functionalities to address the limitations of traditional electronic materials for bio-integrated devices. Herein, the recent progress in skin-mountable functional electronic materials for skin-like electronics is introduced with a focus on five perspectives that entail essential functionalities: stretchability, self-healing ability, biocompatibility, breathability, and biodegradability. All functionalities are advanced with each strategy through rational material designs. The skin-mountable functional materials enable the fabrication of bio-integrated electronic devices, which can lead to new paradigms of electronics combining with the human body.
Collapse
Affiliation(s)
- Jin Young Oh
- Department of Chemical Engineering (Integrated Engineering Program), Kyung Hee University, Yongin, 17104, Republic of Korea
| | - Yeongjun Lee
- Department of Brain and Cognitive Science, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Tae-Woo Lee
- Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea
- Institute of Engineering Research, Research Institute of Advanced Materials, Molecular Foundry, Seoul National University, Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| |
Collapse
|
2
|
Zhang H, Diesendruck CE. Off-center Mechanophore Activation in Block Copolymers. Angew Chem Int Ed Engl 2023; 62:e202213980. [PMID: 36394518 PMCID: PMC10108114 DOI: 10.1002/anie.202213980] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Indexed: 11/18/2022]
Abstract
Block copolymers (BCPs) are used in numerous applications in modern materials science. Yet, like homopolymers, BCPs can undergo covalent bond scission when mechanically stressed (mechanochemistry), which could lead to unexpected consequences in such applications. BCPs' heterogeneity may affect force transduction, perhaps changing force distribution and localization. To verify this, a gem-dichlorocyclopropane (gDCC) embedded linear chain is prepared and extended with a poly(methyl methacrylate) block. When stressed in solution, the mechanochemical ring-opening of gDCC is accelerated compared to homopolymers, even though the mechanophores are at the chain ends. Moreover, a higher mechanophore activation selectivity is obtained. These results indicate that mechanochemical response outside, and even far from the chain center is quite prominent in BCPs, and that forces along the polymer chain can efficiently activate multi-mechanophores regions, even when far from the polymer midchain.
Collapse
Affiliation(s)
- Hang Zhang
- Schulich Faculty of Chemistry, Technion—Israel Institute of TechnologyHaifa3200008Israel
| | - Charles E. Diesendruck
- Schulich Faculty of Chemistry, Technion—Israel Institute of TechnologyHaifa3200008Israel
| |
Collapse
|
3
|
Zhu M, Yu J, Li Z, Ding B. Self‐Healing Fibrous Membranes. Angew Chem Int Ed Engl 2022; 61:e202208949. [DOI: 10.1002/anie.202208949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Indexed: 11/12/2022]
Affiliation(s)
- Miaomiao Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Materials Science and Engineering Donghua University Shanghai 201620 China
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources College of Chemical Engineering Nanjing Forestry University Nanjing 210037 China
| | - Jianyong Yu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Materials Science and Engineering Donghua University Shanghai 201620 China
- Innovation Center for Textile Science and Technology Donghua University Shanghai 201620 China
| | - Zhaoling Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Materials Science and Engineering Donghua University Shanghai 201620 China
- Key Laboratory of Textile Science and Technology Ministry of Education College of Textiles Donghua University Shanghai 201620 China
- Innovation Center for Textile Science and Technology Donghua University Shanghai 201620 China
| | - Bin Ding
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Materials Science and Engineering Donghua University Shanghai 201620 China
- Innovation Center for Textile Science and Technology Donghua University Shanghai 201620 China
| |
Collapse
|
4
|
Zhu M, Yu J, Li Z, Ding B. Self‐Healing Fibrous Membranes. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202208949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Miaomiao Zhu
- Donghua University College of Materials Science and Engineering CHINA
| | - Jianyong Yu
- Donghua University Innovation Center for Textile Science and Technology CHINA
| | - Zhaoling Li
- Donghua University College of Textiles CHINA
| | - Bin Ding
- Donghua University College of Textiles 2999 North Renmin Road, Songjiang District 201620 Shanghai CHINA
| |
Collapse
|
5
|
Abstract
Polymer chains, if long enough, are known to undergo bond scission when mechanically stressed. While the mechanochemical response of random coils is well understood, biopolymers and some key synthetic chains adopt well-defined secondary structures such as helices. To understand covalent mechanochemistry in such structures, poly(γ-benzyl glutamates) are prepared while regulating the feed-monomer chirality, producing chains with similar molecular weights and backbone chemistry but different helicities. Such chains are stressed in solution and their mechanochemistry rates compared by following molecular weight change and using a rhodamine mechanochromophore. Results reveal that while helicity itself is not affected by the covalent bond scissions, chains with higher helicity undergo faster mechanochemistry. Considering that the polymers tested differ only in conformation, these results indicate that helix-induced chain rigidity improves the efficiency of mechanical energy transduction.
Collapse
Affiliation(s)
- Hang Zhang
- Schulich Faculty of ChemistryTechnion—Israel Institute of TechnologyHaifa3200008Israel
| | | |
Collapse
|
6
|
Toughening and Healing of CFRPs by Diels–Alder-Based Nano-Modified Resin through Melt Electro-Writing Process Technique. Int J Mol Sci 2022; 23:ijms23073663. [PMID: 35409023 PMCID: PMC8998279 DOI: 10.3390/ijms23073663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/22/2022] [Accepted: 03/25/2022] [Indexed: 11/17/2022] Open
Abstract
In the current study, a novel approach in terms of the incorporation of self-healing agent (SHA) into unidirectional (UD) carbon fiber reinforced plastics (CFRPs) has been demonstrated. More precisely, Diels–Alder (DA) mechanism-based resin (Bis-maleimide type) containing or not four layered graphene nanoplatelets (GNPs) at the amount of 1 wt% was integrated locally in the mid-thickness area of CFRPs by melt electro-writing process (MEP). Based on that, CFRPs containing or not SHA were fabricated and further tested under Mode I interlaminar fracture toughness experiments. According to experimental results, modified CFRPs exhibited a considerable enhancement in the interlaminar fracture toughness properties (peak load (Pmax) and fracture toughness energy I (GIC) values). After Mode I interlaminar fracture toughness testing, the damaged samples followed the healing process and then were tested again under identical experimental conditions. The repeating of the tests revealed moderate healing efficiency (H.E.) since part of the interlaminar fracture toughness properties were restored. Furthermore, three-point bending (3PB) experiments were conducted, with the aim of assessing the effect of the incorporated SHA on the in-plane mechanical properties of the final CFRPs. Finally, optical microscopy (OM) examinations were performed to investigate the activated/involved damage mechanisms.
Collapse
|
7
|
Diesendruck C, Zhang H. Accelerated Mechanochemistry in Helical Polymers. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202115325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Charles Diesendruck
- Technion - Israel Institute of Technology Schulich Faculty of Chemistry Kiryat Hatechnion 3200008 Haifa ISRAEL
| | - Hang Zhang
- Technion Israel Institute of Technology Schulich Faculty of Chemistry Haifa ISRAEL
| |
Collapse
|
8
|
Geiselhart CM, Mutlu H, Barner‐Kowollik C. Vorbeugen oder Heilen – die beispiellose Notwendigkeit von selbstberichtenden Materialien. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202012592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Christina M. Geiselhart
- Soft Matter Synthesis Laboratory Institut für Biologische Grenzflächen 3 Hermann-von-Helmholtz-Platz 1 76344 Eggenstein Leopoldshafen Deutschland
- Macromolecular Architectures Institut für Technische Chemie und Polymerchemie (ITCP) Karlsruher Institut für Technologie (KIT) Engesserstraße 18 76131 Karlsruhe Deutschland
| | - Hatice Mutlu
- Soft Matter Synthesis Laboratory Institut für Biologische Grenzflächen 3 Hermann-von-Helmholtz-Platz 1 76344 Eggenstein Leopoldshafen Deutschland
- Macromolecular Architectures Institut für Technische Chemie und Polymerchemie (ITCP) Karlsruher Institut für Technologie (KIT) Engesserstraße 18 76131 Karlsruhe Deutschland
| | - Christopher Barner‐Kowollik
- Macromolecular Architectures Institut für Technische Chemie und Polymerchemie (ITCP) Karlsruher Institut für Technologie (KIT) Engesserstraße 18 76131 Karlsruhe Deutschland
- Centre for Materials Science Queensland University of Technology (QUT) 2 George Street Brisbane QLD 4000 Australien
- School of Chemistry and Physics Queensland University of Technology (QUT) 2 George Street Brisbane QLD 4000 Australien
| |
Collapse
|
9
|
Geiselhart CM, Mutlu H, Barner‐Kowollik C. Prevent or Cure-The Unprecedented Need for Self-Reporting Materials. Angew Chem Int Ed Engl 2021; 60:17290-17313. [PMID: 33217121 PMCID: PMC8359351 DOI: 10.1002/anie.202012592] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 11/08/2020] [Indexed: 01/08/2023]
Abstract
Self-reporting smart materials are highly relevant in modern soft matter materials science, as they allow for the autonomous detection of changes in synthetic polymers, materials, and composites. Despite critical advantages of such materials, for example, prolonged lifetime or prevention of disastrous material failures, they have gained much less attention than self-healing materials. However, as diagnosis is critical for any therapy, it is of the utmost importance to report the existence of system changes and their exact location to prevent them from spreading. Thus, we herein critically review the chemistry of self-reporting soft matter materials systems and highlight how current challenges and limitations may be overcome by successfully transferring self-reporting research concepts from the laboratory to the real world. Especially in the space of diagnostic self-reporting systems, the recent SARS-CoV-2 (COVID-19) pandemic indicates an urgent need for such concepts that may be able to detect the presence of viruses or bacteria on and within materials in a self-reporting fashion.
Collapse
Affiliation(s)
- Christina M. Geiselhart
- Soft Matter Synthesis LaboratoryInstitute for Biological Interfaces 3Hermann-von-Helmholtz-Platz 176344Eggenstein LeopoldshafenGermany
- Macromolecular ArchitecturesInstitute for Technical Chemistry and Polymer Chemistry (ITCP)Karlsruhe Institute of Technology (KIT)Engesserstrasse 1876131KarlsruheGermany
| | - Hatice Mutlu
- Soft Matter Synthesis LaboratoryInstitute for Biological Interfaces 3Hermann-von-Helmholtz-Platz 176344Eggenstein LeopoldshafenGermany
- Macromolecular ArchitecturesInstitute for Technical Chemistry and Polymer Chemistry (ITCP)Karlsruhe Institute of Technology (KIT)Engesserstrasse 1876131KarlsruheGermany
| | - Christopher Barner‐Kowollik
- Macromolecular ArchitecturesInstitute for Technical Chemistry and Polymer Chemistry (ITCP)Karlsruhe Institute of Technology (KIT)Engesserstrasse 1876131KarlsruheGermany
- Centre for Materials ScienceQueensland University of Technology (QUT)2 George StreetBrisbaneQLD4000Australia
- School of Chemistry and PhysicsQueensland University of Technology (QUT)2 George StreetBrisbaneQLD4000Australia
| |
Collapse
|
10
|
Li Y, Xu L, Kang S, Zhou L, Liu N, Wu Z. Helicity‐ and Molecular‐Weight‐Driven Self‐Sorting and Assembly of Helical Polymers towards Two‐Dimensional Smectic Architectures and Selectively Adhesive Gels. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202014813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yan‐Xiang Li
- Department of Polymer Science and Engineering School of Chemistry and Chemical Engineering, and Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering Hefei University of Technology Hefei 230009 Anhui Province China
| | - Lei Xu
- Department of Polymer Science and Engineering School of Chemistry and Chemical Engineering, and Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering Hefei University of Technology Hefei 230009 Anhui Province China
| | - Shu‐Ming Kang
- Department of Polymer Science and Engineering School of Chemistry and Chemical Engineering, and Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering Hefei University of Technology Hefei 230009 Anhui Province China
| | - Li Zhou
- Department of Polymer Science and Engineering School of Chemistry and Chemical Engineering, and Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering Hefei University of Technology Hefei 230009 Anhui Province China
| | - Na Liu
- Department of Polymer Science and Engineering School of Chemistry and Chemical Engineering, and Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering Hefei University of Technology Hefei 230009 Anhui Province China
| | - Zong‐Quan Wu
- Department of Polymer Science and Engineering School of Chemistry and Chemical Engineering, and Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering Hefei University of Technology Hefei 230009 Anhui Province China
| |
Collapse
|
11
|
Li Y, Xu L, Kang S, Zhou L, Liu N, Wu Z. Helicity‐ and Molecular‐Weight‐Driven Self‐Sorting and Assembly of Helical Polymers towards Two‐Dimensional Smectic Architectures and Selectively Adhesive Gels. Angew Chem Int Ed Engl 2021; 60:7174-7179. [DOI: 10.1002/anie.202014813] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 01/06/2021] [Indexed: 02/03/2023]
Affiliation(s)
- Yan‐Xiang Li
- Department of Polymer Science and Engineering School of Chemistry and Chemical Engineering, and Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering Hefei University of Technology Hefei 230009 Anhui Province China
| | - Lei Xu
- Department of Polymer Science and Engineering School of Chemistry and Chemical Engineering, and Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering Hefei University of Technology Hefei 230009 Anhui Province China
| | - Shu‐Ming Kang
- Department of Polymer Science and Engineering School of Chemistry and Chemical Engineering, and Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering Hefei University of Technology Hefei 230009 Anhui Province China
| | - Li Zhou
- Department of Polymer Science and Engineering School of Chemistry and Chemical Engineering, and Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering Hefei University of Technology Hefei 230009 Anhui Province China
| | - Na Liu
- Department of Polymer Science and Engineering School of Chemistry and Chemical Engineering, and Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering Hefei University of Technology Hefei 230009 Anhui Province China
| | - Zong‐Quan Wu
- Department of Polymer Science and Engineering School of Chemistry and Chemical Engineering, and Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering Hefei University of Technology Hefei 230009 Anhui Province China
| |
Collapse
|
12
|
Yang J, Du Y, Li X, Qiao C, Jiang H, Zheng J, Lin C, Liu L. Fatigue-Resistant, Notch-Insensitive Zwitterionic Polymer Hydrogels with High Self-Healing Ability. Chempluschem 2020; 85:2158-2165. [PMID: 32955799 DOI: 10.1002/cplu.202000520] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/24/2020] [Indexed: 02/05/2023]
Abstract
Introducing self-healing properties into hydrogels can prolong their application lifetime. However, achieving mechanical strength without sacrificing self-healing properties is still a major challenge. We prepared a series of zwitterionic polymer hydrogels by random copolymerization of zwitterionic ionic monomer (SBMA), cationic monomer (DAC) and hydrophilic monomer (HEMA). The ionic bonds and hydrogen bonds formed in the hydrogels can efficiently dissipate energy and rebuild the network. The resulting hydrogels show high mechanical strength (289-396 KPa of fracture stress, 433-864 % of fracture stress) and have great fatigue resistance. The hydrogel with a 1 : 1 molar ratio of SBMA:DAC possesses the best self-healing properties (self-healing efficiency up to 96.5 % at room temperature for 10 h). The self-healing process is completely spontaneous and does not require external factors to assist. In addition, the hydrogel also possesses notch insensitivity with a fracture energy of 12000 J m-2 . After combining the conductivity of RGO aerogel, the hydrogel/RGO composites show good strain sensitivity with high reliability and self-healing ability, which has certain significance in broadening the application of these zwitterionic hydrogels.
Collapse
Affiliation(s)
- Jianbo Yang
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, P. R. China
| | - Yongxu Du
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, P. R. China
| | - Xuelin Li
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, P. R. China
| | - Congde Qiao
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, P. R. China
| | - Haihui Jiang
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, P. R. China
| | - Jiyong Zheng
- State Key Laboratory for Marine Corrosion and Protection, Luoyang Ship Material Research Institute (LSMRI), Qingdao, 266237, P. R. China
| | - Cunguo Lin
- State Key Laboratory for Marine Corrosion and Protection, Luoyang Ship Material Research Institute (LSMRI), Qingdao, 266237, P. R. China
| | - Libin Liu
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, P. R. China.,State Key Laboratory for Marine Corrosion and Protection, Luoyang Ship Material Research Institute (LSMRI), Qingdao, 266237, P. R. China
| |
Collapse
|
13
|
Deng Y, Zhang Q, Feringa BL, Tian H, Qu D. Toughening a Self‐Healable Supramolecular Polymer by Ionic Cluster‐Enhanced Iron‐Carboxylate Complexes. Angew Chem Int Ed Engl 2020; 59:5278-5283. [DOI: 10.1002/anie.201913893] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 01/17/2020] [Indexed: 11/07/2022]
Affiliation(s)
- Yuanxin Deng
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research CenterSchool of Chemistry and Molecular EngineeringEast China University of Science and Technology 130 Meilong Road Shanghai 200237 China
| | - Qi Zhang
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research CenterSchool of Chemistry and Molecular EngineeringEast China University of Science and Technology 130 Meilong Road Shanghai 200237 China
| | - Ben L. Feringa
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research CenterSchool of Chemistry and Molecular EngineeringEast China University of Science and Technology 130 Meilong Road Shanghai 200237 China
- Centre for Systems ChemistryStratingh Institute for Chemistry and Zernike Institute for Advanced MaterialsUniversity of Groningen Nijenborgh 4 9747 AG Groningen The Netherlands
| | - He Tian
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research CenterSchool of Chemistry and Molecular EngineeringEast China University of Science and Technology 130 Meilong Road Shanghai 200237 China
| | - Da‐Hui Qu
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research CenterSchool of Chemistry and Molecular EngineeringEast China University of Science and Technology 130 Meilong Road Shanghai 200237 China
| |
Collapse
|
14
|
Song X, Wang JP, Song Y, Qi T, Liang Li G. Bioinspired Healable Mechanochromic Function from Fluorescent Polyurethane Composite Film. ChemistryOpen 2020; 9:272-276. [PMID: 32140381 PMCID: PMC7050239 DOI: 10.1002/open.201900295] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 11/20/2019] [Indexed: 12/21/2022] Open
Abstract
Camouflage and wound healing are two vital functions for cephalopods to survive from dangerous ocean risks. Inspired by these dual functions, herein, we report a new type of healable mechanochromic (HMC) material. The bifunctional HMC material consists of two tightly bonded layers. One layer is composed of polyvinyl alcohol (PVA) and titanium dioxide (TiO2) for shielding. Another layer contains supramolecular hydrogen bonding polymers and fluorochromes for healing. The as‐synthesized HMC material exhibits a tunable and reversible mechanochromic function due to the strain‐induced surface structure of composite film. The mechanochromic function can be further restored after damage because of the incorporated healable polyurethane. The healing efficiency of the damaged HMC materials can even reach 98 % at 60 °C for 6 h. The bioinspired HMC material is expected to have potential applications in the information encryption and flexible displays.
Collapse
Affiliation(s)
- Xiaoke Song
- National Engineering Laboratory for Hydrometallurgical Cleaner Production Technology Institute of Process Engineering, Chinese Academy of Sciences Beijing 100049 P. R. China.,University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Jun-Peng Wang
- National Engineering Laboratory for Hydrometallurgical Cleaner Production Technology Institute of Process Engineering, Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Yan Song
- National Engineering Laboratory for Hydrometallurgical Cleaner Production Technology Institute of Process Engineering, Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Tao Qi
- National Engineering Laboratory for Hydrometallurgical Cleaner Production Technology Institute of Process Engineering, Chinese Academy of Sciences Beijing 100049 P. R. China.,University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Guo Liang Li
- National Engineering Laboratory for Hydrometallurgical Cleaner Production Technology Institute of Process Engineering, Chinese Academy of Sciences Beijing 100049 P. R. China.,University of Chinese Academy of Sciences Beijing 100049 P. R. China
| |
Collapse
|
15
|
Deng Y, Zhang Q, Feringa BL, Tian H, Qu D. Toughening a Self‐Healable Supramolecular Polymer by Ionic Cluster‐Enhanced Iron‐Carboxylate Complexes. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201913893] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Yuanxin Deng
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research CenterSchool of Chemistry and Molecular EngineeringEast China University of Science and Technology 130 Meilong Road Shanghai 200237 China
| | - Qi Zhang
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research CenterSchool of Chemistry and Molecular EngineeringEast China University of Science and Technology 130 Meilong Road Shanghai 200237 China
| | - Ben L. Feringa
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research CenterSchool of Chemistry and Molecular EngineeringEast China University of Science and Technology 130 Meilong Road Shanghai 200237 China
- Centre for Systems ChemistryStratingh Institute for Chemistry and Zernike Institute for Advanced MaterialsUniversity of Groningen Nijenborgh 4 9747 AG Groningen The Netherlands
| | - He Tian
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research CenterSchool of Chemistry and Molecular EngineeringEast China University of Science and Technology 130 Meilong Road Shanghai 200237 China
| | - Da‐Hui Qu
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research CenterSchool of Chemistry and Molecular EngineeringEast China University of Science and Technology 130 Meilong Road Shanghai 200237 China
| |
Collapse
|
16
|
Qu G, Li Y, Yu Y, Huang Y, Zhang W, Zhang H, Liu Z, Kong T. Spontaneously Regenerative Tough Hydrogels. Angew Chem Int Ed Engl 2019; 58:10951-10955. [DOI: 10.1002/anie.201904932] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 05/24/2019] [Indexed: 01/14/2023]
Affiliation(s)
- Gang Qu
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound ImagingDepartment of Biomedical EngineeringSchool of MedicineShenzhen University Shenzhen 518060 China
| | - Yang Li
- Department of Gastrointestinal SurgeryShenzhen People's, HospitalSecond Clinical Medical College of Jinan UniversityFirst Affiliated Hospital of Southern University of Science and Technology Shenzhen 518020 China
| | - Yafeng Yu
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound ImagingDepartment of Biomedical EngineeringSchool of MedicineShenzhen University Shenzhen 518060 China
| | - Yuxing Huang
- School of Materials Science and EngineeringNanchang University Nanchang Jiangxi 330031 China
| | - Wei Zhang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound ImagingDepartment of Biomedical EngineeringSchool of MedicineShenzhen University Shenzhen 518060 China
| | - Han Zhang
- Shenzhen Engineering Laboratory of Phosphorene and OptoelectronicsCollege of Optoelectronic EngineeringShenzhen University Shenzhen 518060 China
| | - Zhou Liu
- College of Chemistry and Environmental EngineeringShenzhen University Shenzhen Guangdong 518060 China
| | - Tiantian Kong
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound ImagingDepartment of Biomedical EngineeringSchool of MedicineShenzhen University Shenzhen 518060 China
| |
Collapse
|
17
|
Qu G, Li Y, Yu Y, Huang Y, Zhang W, Zhang H, Liu Z, Kong T. Spontaneously Regenerative Tough Hydrogels. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201904932] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Gang Qu
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound ImagingDepartment of Biomedical EngineeringSchool of MedicineShenzhen University Shenzhen 518060 China
| | - Yang Li
- Department of Gastrointestinal SurgeryShenzhen People's, HospitalSecond Clinical Medical College of Jinan UniversityFirst Affiliated Hospital of Southern University of Science and Technology Shenzhen 518020 China
| | - Yafeng Yu
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound ImagingDepartment of Biomedical EngineeringSchool of MedicineShenzhen University Shenzhen 518060 China
| | - Yuxing Huang
- School of Materials Science and EngineeringNanchang University Nanchang Jiangxi 330031 China
| | - Wei Zhang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound ImagingDepartment of Biomedical EngineeringSchool of MedicineShenzhen University Shenzhen 518060 China
| | - Han Zhang
- Shenzhen Engineering Laboratory of Phosphorene and OptoelectronicsCollege of Optoelectronic EngineeringShenzhen University Shenzhen 518060 China
| | - Zhou Liu
- College of Chemistry and Environmental EngineeringShenzhen University Shenzhen Guangdong 518060 China
| | - Tiantian Kong
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound ImagingDepartment of Biomedical EngineeringSchool of MedicineShenzhen University Shenzhen 518060 China
| |
Collapse
|
18
|
Song Y, Liu Y, Qi T, Li GL. Towards Dynamic but Supertough Healable Polymers through Biomimetic Hierarchical Hydrogen-Bonding Interactions. Angew Chem Int Ed Engl 2018; 57:13838-13842. [PMID: 30144244 DOI: 10.1002/anie.201807622] [Citation(s) in RCA: 230] [Impact Index Per Article: 32.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 08/04/2018] [Indexed: 01/06/2023]
Abstract
A biomimetic (titin protein molecular structure) strategy is reported for preparing transparent and healable elastomers featuring supertoughness (345 MJ m-3 ) and high tensile strength (44 MPa) after self-healing enabled by hierarchical (single, double, and quadruple) hydrogen-bonding moieties in the polymer backbone. The rigid domain containing hierarchical H-bonds formed with urethane, urea, and 2-ureido-4[1H]-pyrimidinone groups leads to a durable network structure that has enhanced mechanical properties and is also dynamic for rapid self-healing. Healable polymers with hierarchical hydrogen-bonding interactions show excellent recoverability and high energy dissipation owing to the durable interaction between polymer chains. This biomimetic strategy of using hierarchical hydrogen bonds as building blocks is an alternative approach for obtaining dynamic, strong, yet smart self-healing polymers for heavy-duty protection materials and wearable electronics.
Collapse
Affiliation(s)
- Yan Song
- National Engineering Laboratory for Hydrometallurgical Cleaner Production Technology, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yuan Liu
- National Engineering Laboratory for Hydrometallurgical Cleaner Production Technology, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Tao Qi
- National Engineering Laboratory for Hydrometallurgical Cleaner Production Technology, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Guo Liang Li
- National Engineering Laboratory for Hydrometallurgical Cleaner Production Technology, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
19
|
Song Y, Liu Y, Qi T, Li GL. Towards Dynamic but Supertough Healable Polymers through Biomimetic Hierarchical Hydrogen‐Bonding Interactions. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201807622] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Yan Song
- National Engineering Laboratory for Hydrometallurgical Cleaner Production TechnologyInstitute of Process EngineeringChinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Yuan Liu
- National Engineering Laboratory for Hydrometallurgical Cleaner Production TechnologyInstitute of Process EngineeringChinese Academy of Sciences Beijing 100190 P. R. China
| | - Tao Qi
- National Engineering Laboratory for Hydrometallurgical Cleaner Production TechnologyInstitute of Process EngineeringChinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Guo Liang Li
- National Engineering Laboratory for Hydrometallurgical Cleaner Production TechnologyInstitute of Process EngineeringChinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| |
Collapse
|
20
|
Yu Z, Liu J, Tan CSY, Scherman OA, Abell C. Supramolecular Nested Microbeads as Building Blocks for Macroscopic Self-Healing Scaffolds. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201711522] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Ziyi Yu
- Department of Chemistry; University of Cambridge; Lensfield Road Cambridge CB2 1EW UK
| | - Ji Liu
- Melville Laboratory for Polymer Synthesis; Department of Chemistry; University of Cambridge; Lensfield Road Cambridge CB2 1EW UK
| | - Cindy Soo Yun Tan
- Melville Laboratory for Polymer Synthesis; Department of Chemistry; University of Cambridge; Lensfield Road Cambridge CB2 1EW UK
- Faculty of Applied Sciences; Universiti Teknologi MARA; 94300 Kota Samarahan Sarawak Malaysia
| | - Oren A. Scherman
- Melville Laboratory for Polymer Synthesis; Department of Chemistry; University of Cambridge; Lensfield Road Cambridge CB2 1EW UK
| | - Chris Abell
- Department of Chemistry; University of Cambridge; Lensfield Road Cambridge CB2 1EW UK
| |
Collapse
|
21
|
Yu Z, Liu J, Tan CSY, Scherman OA, Abell C. Supramolecular Nested Microbeads as Building Blocks for Macroscopic Self-Healing Scaffolds. Angew Chem Int Ed Engl 2018; 57:3079-3083. [PMID: 29377541 PMCID: PMC5915745 DOI: 10.1002/anie.201711522] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Indexed: 12/13/2022]
Abstract
The ability to construct self‐healing scaffolds that are injectable and capable of forming a designed morphology offers the possibility to engineer sustainable materials. Herein, we introduce supramolecular nested microbeads that can be used as building blocks to construct macroscopic self‐healing scaffolds. The core–shell microbeads remain in an “inert” state owing to the isolation of a pair of complementary polymers in a form that can be stored as an aqueous suspension. An annealing process after injection effectively induces the re‐construction of the microbead units, leading to supramolecular gelation in a preconfigured shape. The resulting macroscopic scaffold is dynamically stable, displaying self‐recovery in a self‐healing electronic conductor. This strategy of using the supramolecular assembled nested microbeads as building blocks represents an alternative to injectable hydrogel systems, and shows promise in the field of structural biomaterials and flexible electronics.
Collapse
Affiliation(s)
- Ziyi Yu
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Ji Liu
- Melville Laboratory for Polymer Synthesis, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Cindy Soo Yun Tan
- Melville Laboratory for Polymer Synthesis, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK.,Faculty of Applied Sciences, Universiti Teknologi MARA, 94300, Kota Samarahan, Sarawak, Malaysia
| | - Oren A Scherman
- Melville Laboratory for Polymer Synthesis, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Chris Abell
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| |
Collapse
|
22
|
Jin B, Liu M, Zhang Q, Zhan X, Chen F. Silicone Oil Swelling Slippery Surfaces Based on Mussel-Inspired Magnetic Nanoparticles with Multiple Self-Healing Mechanisms. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:10340-10350. [PMID: 28893069 DOI: 10.1021/acs.langmuir.7b02691] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
In this work, a novel substrate building block, magnetic Fe3O4 nanoparticles armed with dopamine molecules were developed via mussel-inspired metal-coordination bonds. Combined with glycidyl methacrylate, polydimethylsiloxane propyl ether methacrylate, and diethylenetriamine, the original silicone oil swelling slippery liquid-infused porous surfaces (SLIPS) were first prepared by reversible coordinate bonds and strong covalent bonds cross-linking process. The matrix mechanical characteristics and surface physicochemical properties were systematically investigated. Results showed that the mechanical property of copolymer matrix and surface wettability of SLIPS can be remarkably recovered, which were due to the synergistic interactions of magnetic nanoparticles' intrinsic photothermal effect, reversible Fe-catechol coordination, and diffused lubricating liquid. After irradiating with sunlamp for 2 h and sequentially healing for 10 h under ambient conditions, the crack almost disappeared under optical microscopy with 78.25% healing efficiency (HEf) of toughness, and surface slippery was completely retrieved to water droplets. The efficient self-heal of copolymer matrix (66.5% HEf after eighth cutting-healing cycle) and recovering of slipperiness (SA < 5° and 5° < SA < 17° after fourth and eighth cutting-centrifuging-healing cycles, respectively) would extend longevity of SLIPS when subjected to multiple damages. Moreover, the prepared SLIPS displayed superb self-cleaning and liquid-repellent properties to a wide range of particulate contaminants and fluids.
Collapse
Affiliation(s)
- Biyu Jin
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University , Hangzhou 310027, People's Republic of China
| | - Mingzhu Liu
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University , Hangzhou 310027, People's Republic of China
| | - Qinghua Zhang
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University , Hangzhou 310027, People's Republic of China
| | - Xiaoli Zhan
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University , Hangzhou 310027, People's Republic of China
| | - Fengqiu Chen
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University , Hangzhou 310027, People's Republic of China
| |
Collapse
|
23
|
New Members and Foreign Associates of the National Academy of Sciences New Fellows and Foreign Members of the Royal Society. Angew Chem Int Ed Engl 2017; 56:7349-7350. [DOI: 10.1002/anie.201704983] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
24
|
Neue Mitglieder der National Academy of Sciences Neue Mitglieder der Royal Society. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201704983] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
25
|
Levy A, Wang F, Lang A, Galant O, Diesendruck CE. Intramolecular Cross-Linking: Addressing Mechanochemistry with a Bioinspired Approach. Angew Chem Int Ed Engl 2017; 56:6431-6434. [DOI: 10.1002/anie.201612242] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Revised: 03/30/2017] [Indexed: 11/10/2022]
Affiliation(s)
- Avishai Levy
- Schulich Faculty of Chemistry and Russell-Berrie Nanotechnology Center; Technion-Israel Institute of Technology; Haifa 32000 Israel
| | - Feng Wang
- Schulich Faculty of Chemistry and Russell-Berrie Nanotechnology Center; Technion-Israel Institute of Technology; Haifa 32000 Israel
| | - Arad Lang
- Schulich Faculty of Chemistry and Russell-Berrie Nanotechnology Center; Technion-Israel Institute of Technology; Haifa 32000 Israel
| | - Or Galant
- Schulich Faculty of Chemistry and Russell-Berrie Nanotechnology Center; Technion-Israel Institute of Technology; Haifa 32000 Israel
| | - Charles E. Diesendruck
- Schulich Faculty of Chemistry and Russell-Berrie Nanotechnology Center; Technion-Israel Institute of Technology; Haifa 32000 Israel
| |
Collapse
|
26
|
Levy A, Wang F, Lang A, Galant O, Diesendruck CE. Intramolecular Cross-Linking: Addressing Mechanochemistry with a Bioinspired Approach. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201612242] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Avishai Levy
- Schulich Faculty of Chemistry and Russell-Berrie Nanotechnology Center; Technion-Israel Institute of Technology; Haifa 32000 Israel
| | - Feng Wang
- Schulich Faculty of Chemistry and Russell-Berrie Nanotechnology Center; Technion-Israel Institute of Technology; Haifa 32000 Israel
| | - Arad Lang
- Schulich Faculty of Chemistry and Russell-Berrie Nanotechnology Center; Technion-Israel Institute of Technology; Haifa 32000 Israel
| | - Or Galant
- Schulich Faculty of Chemistry and Russell-Berrie Nanotechnology Center; Technion-Israel Institute of Technology; Haifa 32000 Israel
| | - Charles E. Diesendruck
- Schulich Faculty of Chemistry and Russell-Berrie Nanotechnology Center; Technion-Israel Institute of Technology; Haifa 32000 Israel
| |
Collapse
|