1
|
Royes J, Ilioaia O, Lubart Q, Angius F, Dubacheva GV, Bally M, Miroux B, Tribet C. Bacteria‐Based Production of Thiol‐Clickable, Genetically Encoded Lipid Nanovesicles. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201902929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Jorge Royes
- PASTEURDépartement de ChimieÉcole Normale SuperiéurePSL UniversitySorbonne UniversitéCNRS 24 rue Lhomond 75005 Paris France
- UMR7099Institut de Biologie Physico-ChimiqueCNRSUniv. Paris DiderotSorbonne Université 13 rue Pierre et Marie Curie 75005 Paris France
| | - Oana Ilioaia
- UMR7099Institut de Biologie Physico-ChimiqueCNRSUniv. Paris DiderotSorbonne Université 13 rue Pierre et Marie Curie 75005 Paris France
| | - Quentin Lubart
- Department of PhysicsChalmers University of Technology Gothenburg Sweden
| | - Federica Angius
- UMR7099Institut de Biologie Physico-ChimiqueCNRSUniv. Paris DiderotSorbonne Université 13 rue Pierre et Marie Curie 75005 Paris France
- Present Address: Department of MicrobiologyInstitute for Water and Wetland Research Heyendaalseweg 135 6525 Nijmegen The Netherlands
| | - Galina V. Dubacheva
- PPSMCNRSÉcole Normale Supérieure Paris-SaclayUniversité Paris-Saclay 61 Avenue du Président Wilson 94235 Cachan France
| | - Marta Bally
- Department of PhysicsChalmers University of Technology Gothenburg Sweden
| | - Bruno Miroux
- UMR7099Institut de Biologie Physico-ChimiqueCNRSUniv. Paris DiderotSorbonne Université 13 rue Pierre et Marie Curie 75005 Paris France
| | - Christophe Tribet
- PASTEURDépartement de ChimieÉcole Normale SuperiéurePSL UniversitySorbonne UniversitéCNRS 24 rue Lhomond 75005 Paris France
| |
Collapse
|
2
|
Royes J, Ilioaia O, Lubart Q, Angius F, Dubacheva GV, Bally M, Miroux B, Tribet C. Bacteria-Based Production of Thiol-Clickable, Genetically Encoded Lipid Nanovesicles. Angew Chem Int Ed Engl 2019; 58:7395-7399. [PMID: 30934157 DOI: 10.1002/anie.201902929] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Indexed: 12/31/2022]
Abstract
Despite growing research efforts on the preparation of (bio)functional liposomes, synthetic capsules cannot reach the densities of protein loading and the control over peptide display that is achieved by natural vesicles. Herein, a microbial platform for high-yield production of lipidic nanovesicles with clickable thiol moieties in their outer corona is reported. These nanovesicles show low size dispersity, are decorated with a dense, perfectly oriented, and customizable corona of transmembrane polypeptides. Furthermore, this approach enables encapsulation of soluble proteins into the nanovesicles. Due to the mild preparation and loading conditions (absence of organic solvents, pH gradients, or detergents) and their straightforward surface functionalization, which takes advantage of the diversity of commercially available maleimide derivatives, bacteria-based proteoliposomes are an attractive eco-friendly alternative that can outperform currently used liposomes.
Collapse
Affiliation(s)
- Jorge Royes
- PASTEUR, Département de Chimie, École Normale Superiéure, PSL University, Sorbonne Université, CNRS, 24 rue Lhomond, 75005, Paris, France.,UMR7099, Institut de Biologie Physico-Chimique, CNRS, Univ. Paris Diderot, Sorbonne Université, 13 rue Pierre et Marie Curie, 75005, Paris, France
| | - Oana Ilioaia
- UMR7099, Institut de Biologie Physico-Chimique, CNRS, Univ. Paris Diderot, Sorbonne Université, 13 rue Pierre et Marie Curie, 75005, Paris, France
| | - Quentin Lubart
- Department of Physics, Chalmers University of Technology, Gothenburg, Sweden
| | - Federica Angius
- UMR7099, Institut de Biologie Physico-Chimique, CNRS, Univ. Paris Diderot, Sorbonne Université, 13 rue Pierre et Marie Curie, 75005, Paris, France.,Present Address: Department of Microbiology, Institute for Water and Wetland Research, Heyendaalseweg 135, 6525, Nijmegen, The Netherlands
| | - Galina V Dubacheva
- PPSM, CNRS, École Normale Supérieure Paris-Saclay, Université Paris-Saclay, 61 Avenue du Président Wilson, 94235, Cachan, France
| | - Marta Bally
- Department of Physics, Chalmers University of Technology, Gothenburg, Sweden
| | - Bruno Miroux
- UMR7099, Institut de Biologie Physico-Chimique, CNRS, Univ. Paris Diderot, Sorbonne Université, 13 rue Pierre et Marie Curie, 75005, Paris, France
| | - Christophe Tribet
- PASTEUR, Département de Chimie, École Normale Superiéure, PSL University, Sorbonne Université, CNRS, 24 rue Lhomond, 75005, Paris, France
| |
Collapse
|
3
|
Zapp C, Minsky BB, Boehm H. Tuning RGD Motif and Hyaluronan Density to Study Integrin Binding. Front Physiol 2018; 9:1022. [PMID: 30131707 PMCID: PMC6090076 DOI: 10.3389/fphys.2018.01022] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 07/10/2018] [Indexed: 01/25/2023] Open
Abstract
Well-controlled surfaces with immobilized substrates enable novel approaches to investigate specific aspects of biological processes related to cell adhesion or motility. A subset of integrins, cellular transmembrane glycoproteins, recognize the evolutionarily conserved tripeptide sequence RGD, and anchor cells to their surrounding proteins as well as mediate bidirectional signaling. In this study, the main question was how co-presentation of hyaluronan (HA), an essential component of the extracellular matrix (ECM), and the RGD motif affect integrin binding. We report a method to prepare self-assembled monolayers on gold surfaces, co-presenting the cell adhesive RGD motif and small HA molecules, to investigate integrin containing proteoliposome binding. This technique enables an independent adjustment of the RGD motif and HA density while maintaining a passivating background: Layer formation and subsequent interactions with αIIbβ3 integrins, which are reconstituted in liposomes, was monitored by label-free quartz crystal microbalance with dissipation monitoring (QCM-D). Exceeding a critical RGD motif density of 40% results in enhanced binding of proteoliposomes. Co-presentation studies with varying HA and constant RGD motif density demonstrate that marginal amounts of HA are sufficient to prevent integrin binding. These findings are of specific importance in relation to cancer cell microenvironments, which show highly enriched HA in the surrounding ECM to reduce adhesion properties.
Collapse
Affiliation(s)
- Cornelia Zapp
- Department of Cellular Biophysics, Max Planck Institute for Medical Research, Heidelberg, Germany.,Physical Chemistry, Heidelberg University, Heidelberg, Germany
| | - Burcu B Minsky
- Department of Cellular Biophysics, Max Planck Institute for Medical Research, Heidelberg, Germany
| | - Heike Boehm
- Department of Cellular Biophysics, Max Planck Institute for Medical Research, Heidelberg, Germany.,Physical Chemistry, Heidelberg University, Heidelberg, Germany
| |
Collapse
|