1
|
Yum JH, Sugiyama H, Park S. Harnessing DNA as a Designable Scaffold for Asymmetric Catalysis: Recent Advances and Future Perspectives. CHEM REC 2022; 22:e202100333. [PMID: 35312235 DOI: 10.1002/tcr.202100333] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 03/03/2022] [Accepted: 03/04/2022] [Indexed: 12/27/2022]
Abstract
Since the first report of DNAzyme by in vitro selection in 1994, catalytic DNA has investigated extensively, and their application has expanded continually in virtue of rapid advances in molecular biology and biotechnology. Nowadays, DNA is in the second prime time by way of DNA-based hybrid catalysts and DNA metalloenzymes in which helical chirality of DNA serves to asymmetric catalysis. DNA-based hybrid catalysts are attractive system to respond the demand of the times to pursuit green and sustainable society beyond traditional catalytic systems that value reaction efficiency. Herein, we highlight the recent advances and perspective of DNA-based hybrid catalysts with various aspects of DNA as a versatile scaffold for asymmetric synthesis. We hope that scientists in a variety of fields will be encouraged to join and promote remarkable evolution of this interesting research.
Collapse
Affiliation(s)
- Ji Hye Yum
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-oiwakecho, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Hiroshi Sugiyama
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-oiwakecho, Sakyo-ku, Kyoto, 606-8502, Japan.,Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, Yoshida-ushinomiyacho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Soyoung Park
- Immunology Frontier Research Center (iFReC), Osaka University, 3-1 Yamadaoka, Suita, 565-0871, Japan.,Research Institute for Microbial Diseases (RIMD), Osaka University, 3-1 Yamadaoka, Suita, 565-0871, Japan
| |
Collapse
|
2
|
Zhong H, Lo W, Man T, Williams BP, Li D, Chen S, Pei H, Li L, Tsung C. Stabilizing DNAzymes through Encapsulation in a Metal–Organic Framework. Chemistry 2020; 26:12931-12935. [DOI: 10.1002/chem.202002178] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Indexed: 12/21/2022]
Affiliation(s)
- Huiye Zhong
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular Engineering East China Normal University 500 Dongchuan Road Shanghai 200241 P.R. China
| | - Wei‐Shang Lo
- Department of Chemistry Merkert Chemistry Center Boston College 2609 Beacon Street Chestnut Hill MA 02467 USA
| | - Tiantian Man
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular Engineering East China Normal University 500 Dongchuan Road Shanghai 200241 P.R. China
| | - Benjamin P. Williams
- Department of Chemistry Merkert Chemistry Center Boston College 2609 Beacon Street Chestnut Hill MA 02467 USA
| | - Dan Li
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular Engineering East China Normal University 500 Dongchuan Road Shanghai 200241 P.R. China
| | - Sheng‐Yu Chen
- School of Physical Science and Technology ShanghaiTech University 393 Middle Huaxia Road Pudong, Shanghai 201210 P.R. China
| | - Hao Pei
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular Engineering East China Normal University 500 Dongchuan Road Shanghai 200241 P.R. China
| | - Li Li
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular Engineering East China Normal University 500 Dongchuan Road Shanghai 200241 P.R. China
| | - Chia‐Kuang Tsung
- Department of Chemistry Merkert Chemistry Center Boston College 2609 Beacon Street Chestnut Hill MA 02467 USA
| |
Collapse
|
3
|
Qi Q, Lv S, Hao M, Dong X, Gu Y, Wu P, Zhang W, Chen Y, Wang C. An Efficient Cyclic Di-AMP Based Artificial Metalloribozyme for Enantioselective Diels-Alder Reactions. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000652] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Qianqian Qi
- Key Laboratory of Applied Surface and Colloid Chemistry; Ministry of Education; School of Chemistry and Chemical Engineering; Shaanxi Normal University; 620 West Chang'an Avenue 710119 Xi'an China
| | - Shuting Lv
- Key Laboratory of Applied Surface and Colloid Chemistry; Ministry of Education; School of Chemistry and Chemical Engineering; Shaanxi Normal University; 620 West Chang'an Avenue 710119 Xi'an China
| | - Min Hao
- Key Laboratory of Applied Surface and Colloid Chemistry; Ministry of Education; School of Chemistry and Chemical Engineering; Shaanxi Normal University; 620 West Chang'an Avenue 710119 Xi'an China
| | - Xingchen Dong
- Key Laboratory of Applied Surface and Colloid Chemistry; Ministry of Education; School of Chemistry and Chemical Engineering; Shaanxi Normal University; 620 West Chang'an Avenue 710119 Xi'an China
| | - Youkun Gu
- Key Laboratory of Applied Surface and Colloid Chemistry; Ministry of Education; School of Chemistry and Chemical Engineering; Shaanxi Normal University; 620 West Chang'an Avenue 710119 Xi'an China
| | - Peizhe Wu
- Key Laboratory of Applied Surface and Colloid Chemistry; Ministry of Education; School of Chemistry and Chemical Engineering; Shaanxi Normal University; 620 West Chang'an Avenue 710119 Xi'an China
| | - Wenyue Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry; Ministry of Education; School of Chemistry and Chemical Engineering; Shaanxi Normal University; 620 West Chang'an Avenue 710119 Xi'an China
| | - Yashao Chen
- Key Laboratory of Applied Surface and Colloid Chemistry; Ministry of Education; School of Chemistry and Chemical Engineering; Shaanxi Normal University; 620 West Chang'an Avenue 710119 Xi'an China
| | - Changhao Wang
- Key Laboratory of Applied Surface and Colloid Chemistry; Ministry of Education; School of Chemistry and Chemical Engineering; Shaanxi Normal University; 620 West Chang'an Avenue 710119 Xi'an China
| |
Collapse
|
4
|
Wang C, Hao M, Qi Q, Dang J, Dong X, Lv S, Xiong L, Gao H, Jia G, Chen Y, Hartig JS, Li C. Highly Efficient Cyclic Dinucleotide Based Artificial Metalloribozymes for Enantioselective Friedel–Crafts Reactions in Water. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201912962] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Changhao Wang
- Key Laboratory of Applied Surface and Colloid ChemistryMinistry of EducationSchool of Chemistry and Chemical EngineeringShaanxi Normal University Xi'an 710119 China
| | - Min Hao
- Key Laboratory of Applied Surface and Colloid ChemistryMinistry of EducationSchool of Chemistry and Chemical EngineeringShaanxi Normal University Xi'an 710119 China
| | - Qianqian Qi
- Key Laboratory of Applied Surface and Colloid ChemistryMinistry of EducationSchool of Chemistry and Chemical EngineeringShaanxi Normal University Xi'an 710119 China
| | - Jingshuang Dang
- Key Laboratory of Applied Surface and Colloid ChemistryMinistry of EducationSchool of Chemistry and Chemical EngineeringShaanxi Normal University Xi'an 710119 China
| | - Xingchen Dong
- Key Laboratory of Applied Surface and Colloid ChemistryMinistry of EducationSchool of Chemistry and Chemical EngineeringShaanxi Normal University Xi'an 710119 China
| | - Shuting Lv
- Key Laboratory of Applied Surface and Colloid ChemistryMinistry of EducationSchool of Chemistry and Chemical EngineeringShaanxi Normal University Xi'an 710119 China
| | - Ling Xiong
- Key Laboratory of Applied Surface and Colloid ChemistryMinistry of EducationSchool of Chemistry and Chemical EngineeringShaanxi Normal University Xi'an 710119 China
| | - Huanhuan Gao
- Key Laboratory of Applied Surface and Colloid ChemistryMinistry of EducationSchool of Chemistry and Chemical EngineeringShaanxi Normal University Xi'an 710119 China
| | - Guoqing Jia
- State Key Laboratory of CatalysisDalian Institute of Chemical PhysicsChinese Academy of Sciences Dalian 116023 China
| | - Yashao Chen
- Key Laboratory of Applied Surface and Colloid ChemistryMinistry of EducationSchool of Chemistry and Chemical EngineeringShaanxi Normal University Xi'an 710119 China
| | - Jörg S. Hartig
- Department of ChemistryKonstanz Research School Chemical Biology (KoRS-CB)University of Konstanz 78457 Konstanz Germany
| | - Can Li
- State Key Laboratory of CatalysisDalian Institute of Chemical PhysicsChinese Academy of Sciences Dalian 116023 China
| |
Collapse
|
5
|
Wang C, Hao M, Qi Q, Dang J, Dong X, Lv S, Xiong L, Gao H, Jia G, Chen Y, Hartig JS, Li C. Highly Efficient Cyclic Dinucleotide Based Artificial Metalloribozymes for Enantioselective Friedel-Crafts Reactions in Water. Angew Chem Int Ed Engl 2020; 59:3444-3449. [PMID: 31825550 DOI: 10.1002/anie.201912962] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 11/25/2019] [Indexed: 01/01/2023]
Abstract
The diverse secondary structures of nucleic acids are emerging as attractive chiral scaffolds to construct artificial metalloenzymes (ArMs) for enantioselective catalysis. DNA-based ArMs containing duplex and G-quadruplex scaffolds have been widely investigated, yet RNA-based ArMs are scarce. Here we report that a cyclic dinucleotide of c-di-AMP and Cu2+ ions assemble into an artificial metalloribozyme (c-di-AMP⋅Cu2+ ) that enables catalysis of enantioselective Friedel-Crafts reactions in aqueous media with high reactivity and excellent enantioselectivity of up to 97 % ee. The assembly of c-di-AMP⋅Cu2+ gives rise to a 20-fold rate acceleration compared to Cu2+ ions. Based on various biophysical techniques and density function theory (DFT) calculations, a fine coordination structure of c-di-AMP⋅Cu2+ metalloribozyme is suggested in which two c-di-AMP form a dimer scaffold and the Cu2+ ion is located in the center of an adenine-adenine plane through binding to two N7 nitrogen atoms and one phosphate oxygen atom.
Collapse
Affiliation(s)
- Changhao Wang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Min Hao
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Qianqian Qi
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Jingshuang Dang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Xingchen Dong
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Shuting Lv
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Ling Xiong
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Huanhuan Gao
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Guoqing Jia
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Yashao Chen
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Jörg S Hartig
- Department of Chemistry, Konstanz Research School Chemical Biology (KoRS-CB), University of Konstanz, 78457, Konstanz, Germany
| | - Can Li
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| |
Collapse
|
6
|
Engelhard DM, Stratmann LM, Clever GH. Structure-Property Relationships in Cu II -Binding Tetramolecular G-Quadruplex DNA. Chemistry 2017; 24:2117-2125. [PMID: 29139578 DOI: 10.1002/chem.201703409] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2017] [Indexed: 12/29/2022]
Abstract
A series of artificial metal-base tetrads composed of a CuII cation coordinating to four pyridines, covalently attached to the ends of tetramolecular G-quadruplex DNA strands [LA-D d(G4 )]4 (LA-D =ligand derivatives), was systematically studied. Structurally, the square-planar [Cu(pyridine)4 ] complex behaves analogously to the canonical guanine quartet. Copper coordination to all studied ligand derivatives was found to increase G-quadruplex thermodynamic stability, tolerating a great variety of ligand linker lengths (1-5 atoms) and thus demonstrating the robustness of the chosen ligand design. Only at long linker lengths, the stabilizing effect of copper binding is compensated by the loss of conformational freedom. A previously reported ligand LE with chiral backbone enables incorporation at any oligonucleotide position. We show that ligand chirality distinctly steers CuII -induced G-quadruplex stabilization. 5'-End formation of two metal-base tetrads by tetramolecular G-quadruplex [LE2 d(G)4 ]4 shows that stabilization in the presence of CuII is not additive. All results are based on UV/Vis thermal denaturation, thermal difference, circular dichroism experiments and molecular dynamics simulations.
Collapse
Affiliation(s)
- David M Engelhard
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Straße 6, 44227, Dortmund, Germany
| | - Lukas M Stratmann
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Straße 6, 44227, Dortmund, Germany
| | - Guido H Clever
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Straße 6, 44227, Dortmund, Germany
| |
Collapse
|
7
|
Engelhard DM, Nowack J, Clever GH. Kupfer-vermittelte Topologieänderung und Thrombin-Inhibierung mit telomerischen DNA-G-Quadruplexen. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201705724] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- David M. Engelhard
- Fakultät für Chemie und Chemische Biologie; Technische Universität Dortmund; Otto-Hahn-Straße 6 44227 Dortmund Deutschland
| | - Julia Nowack
- Fakultät für Chemie und Chemische Biologie; Technische Universität Dortmund; Otto-Hahn-Straße 6 44227 Dortmund Deutschland
| | - Guido H. Clever
- Fakultät für Chemie und Chemische Biologie; Technische Universität Dortmund; Otto-Hahn-Straße 6 44227 Dortmund Deutschland
| |
Collapse
|
8
|
Engelhard DM, Nowack J, Clever GH. Copper-Induced Topology Switching and Thrombin Inhibition with Telomeric DNA G-Quadruplexes. Angew Chem Int Ed Engl 2017; 56:11640-11644. [DOI: 10.1002/anie.201705724] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Indexed: 11/10/2022]
Affiliation(s)
- David M. Engelhard
- Department of Chemistry and Chemical Biology; TU Dortmund University; Otto-Hahn-Strasse 6 44227 Dortmund Germany
| | - Julia Nowack
- Department of Chemistry and Chemical Biology; TU Dortmund University; Otto-Hahn-Strasse 6 44227 Dortmund Germany
| | - Guido H. Clever
- Department of Chemistry and Chemical Biology; TU Dortmund University; Otto-Hahn-Strasse 6 44227 Dortmund Germany
| |
Collapse
|
9
|
Dey S, Rühl CL, Jäschke A. Catalysis of Michael Additions by Covalently Modified G-Quadruplex DNA. Chemistry 2017; 23:12162-12170. [DOI: 10.1002/chem.201700632] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Indexed: 02/06/2023]
Affiliation(s)
- Surjendu Dey
- Institute of Pharmacy and Molecular Biotechnology; Heidelberg University; 69120 Heidelberg Germany
| | - Carmen L. Rühl
- Institute of Pharmacy and Molecular Biotechnology; Heidelberg University; 69120 Heidelberg Germany
| | - Andres Jäschke
- Institute of Pharmacy and Molecular Biotechnology; Heidelberg University; 69120 Heidelberg Germany
| |
Collapse
|
10
|
Marek JJ, Hennecke U. Why DNA Is a More Effective Scaffold than RNA in Nucleic Acid-Based Asymmetric Catalysis-Supramolecular Control of Cooperative Effects. Chemistry 2017; 23:6009-6013. [DOI: 10.1002/chem.201606043] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Indexed: 11/11/2022]
Affiliation(s)
- Jasmin J. Marek
- Organisch-Chemisches Institut; Westfälische Wilhelms-Universität Münster; Correnstraße 40 48149 Münster Germany
| | - Ulrich Hennecke
- Organisch-Chemisches Institut; Westfälische Wilhelms-Universität Münster; Correnstraße 40 48149 Münster Germany
| |
Collapse
|
11
|
Marek JJ, Singh RP, Heuer A, Hennecke U. Enantioselective Catalysis by Using Short, Structurally Defined DNA Hairpins as Scaffold for Hybrid Catalysts. Chemistry 2017; 23:6004-6008. [PMID: 28029714 DOI: 10.1002/chem.201606002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Indexed: 11/09/2022]
Abstract
A new type of DNA metal complex hybrid catalyst, which is based on single-stranded DNA oligonucleotides, is described. It was shown that oligonucleotides as short as 14 nucleotides that fold into hairpin structures are suitable as nucleic acid components for DNA hybrid catalysts. With these catalysts, excellent enantioinduction in asymmetric Diels-Alder reactions with selectivity values as high as 96 % enantiomeric excess (ee) can be achieved. Molecular dynamics simulations indicate that a rather flexible loop combined with a rigid stem region provides DNA scaffolds with these high selectivity values.
Collapse
Affiliation(s)
- Jasmin J Marek
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität, Corrensstrasse 40, 48149, Münster, Germany
| | - Raghvendra P Singh
- Institut für Physikalische Chemie, Westfälische Wilhelms-Universität, Corrensstrasse 28/30, 48149, Münster, Germany
| | - Andreas Heuer
- Institut für Physikalische Chemie, Westfälische Wilhelms-Universität, Corrensstrasse 28/30, 48149, Münster, Germany
| | - Ulrich Hennecke
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität, Corrensstrasse 40, 48149, Münster, Germany
| |
Collapse
|
12
|
Rioz-Martínez A, Oelerich J, Ségaud N, Roelfes G. DNA-Accelerated Catalysis of Carbene-Transfer Reactions by a DNA/Cationic Iron Porphyrin Hybrid. Angew Chem Int Ed Engl 2016; 55:14136-14140. [PMID: 27730731 PMCID: PMC5113691 DOI: 10.1002/anie.201608121] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Indexed: 11/16/2022]
Abstract
A novel DNA-based hybrid catalyst comprised of salmon testes DNA and an iron(III) complex of a cationic meso-tetrakis(N-alkylpyridyl)porphyrin was developed. When the N-methyl substituents were placed at the ortho position with respect to the porphyrin ring, high reactivity in catalytic carbene-transfer reactions was observed under mild conditions, as demonstrated in the catalytic enantioselective cyclopropanation of styrene derivatives with ethyl diazoacetate (EDA) as the carbene precursor. A remarkable feature of this catalytic system is the large DNA-induced rate acceleration observed in this reaction and the related dimerization of EDA. It is proposed that high effective molarity of all components of the reaction in or near the DNA is one of the key contributors to this unique reactivity. This study demonstrates that the concept of DNA-based asymmetric catalysis can be expanded into the realm of organometallic chemistry.
Collapse
Affiliation(s)
- Ana Rioz-Martínez
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Jens Oelerich
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Nathalie Ségaud
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Gerard Roelfes
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands.
| |
Collapse
|
13
|
Rioz-Martínez A, Oelerich J, Ségaud N, Roelfes G. DNA-Accelerated Catalysis of Carbene-Transfer Reactions by a DNA/Cationic Iron Porphyrin Hybrid. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201608121] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Ana Rioz-Martínez
- Stratingh Institute for Chemistry; University of Groningen; Nijenborgh 4 9747 AG Groningen The Netherlands
| | - Jens Oelerich
- Stratingh Institute for Chemistry; University of Groningen; Nijenborgh 4 9747 AG Groningen The Netherlands
| | - Nathalie Ségaud
- Stratingh Institute for Chemistry; University of Groningen; Nijenborgh 4 9747 AG Groningen The Netherlands
| | - Gerard Roelfes
- Stratingh Institute for Chemistry; University of Groningen; Nijenborgh 4 9747 AG Groningen The Netherlands
| |
Collapse
|