1
|
Chen F, Zheng Y, Yang H, Yang Q, Wu L, Zhou N. Iron‐Catalyzed Silylation and Spirocyclization of Biaryl‐Ynones: A Radical Cascade Process toward Silylated Spiro[5.5]trienones. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200049] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Fei Chen
- Henan Provincial Engineering and Technology Research Center for Precise Synthesis of Fluorine-Containing Drugs Anyang Key Laboratory of New Functional Complex Materials College of Chemistry and Chemical Engineering Anyang Normal University Anyang 455000 People's Republic of China
| | - Yang Zheng
- Henan Provincial Engineering and Technology Research Center for Precise Synthesis of Fluorine-Containing Drugs Anyang Key Laboratory of New Functional Complex Materials College of Chemistry and Chemical Engineering Anyang Normal University Anyang 455000 People's Republic of China
| | - Hao Yang
- Henan Provincial Engineering and Technology Research Center for Precise Synthesis of Fluorine-Containing Drugs Anyang Key Laboratory of New Functional Complex Materials College of Chemistry and Chemical Engineering Anyang Normal University Anyang 455000 People's Republic of China
| | - Qing‐Yun Yang
- Henan Provincial Engineering and Technology Research Center for Precise Synthesis of Fluorine-Containing Drugs Anyang Key Laboratory of New Functional Complex Materials College of Chemistry and Chemical Engineering Anyang Normal University Anyang 455000 People's Republic of China
| | - Lu‐Yan Wu
- Henan Provincial Engineering and Technology Research Center for Precise Synthesis of Fluorine-Containing Drugs Anyang Key Laboratory of New Functional Complex Materials College of Chemistry and Chemical Engineering Anyang Normal University Anyang 455000 People's Republic of China
| | - Nengneng Zhou
- Key Laboratory of Functionalized Molecular Solids, Ministry of Education Anhui Key Laboratory of Molecule-Based Materials College of Chemistry and Materials Science Anhui Normal University Wuhu 241000 People's Republic of China
| |
Collapse
|
2
|
|
3
|
Wei B, Zhang D, Chen Y, Lei A, Knochel P. Preparation of Polyfunctional Biaryl Derivatives by Cyclolanthanation of 2-Bromobiaryls and Heterocyclic Analogues Using nBu 2 LaCl⋅4 LiCl. Angew Chem Int Ed Engl 2019; 58:15631-15635. [PMID: 31461206 PMCID: PMC6856828 DOI: 10.1002/anie.201908046] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 07/30/2019] [Indexed: 12/11/2022]
Abstract
Various aryl- and heteroaryl-substituted 2-bromobiaryls are converted to cyclometalated lanthanum intermediates by reaction with nBu2 LaCl⋅4 LiCl. These resulting lanthanum heterocycles are key intermediates for the facile preparation of functionalized 2,2'-diiodobiaryls, silafluorenes, fluoren-9-ones, phenanthrenes, and their related heterocyclic analogues. X-ray absorption fine structure (XAFS) spectroscopy was used to rationalize the proposed structures of the involved organolanthanum species.
Collapse
Affiliation(s)
- Baosheng Wei
- Department ChemieLudwig-Maximilians-Universität MünchenButenandtstrasse 5–13, Haus F81377MünchenGermany
| | - Dongchao Zhang
- Institute for Advanced Studies (IAS)College of Chemistry and Molecular SciencesWuhan UniversityWuhan430072HubeiP. R. China
| | - Yi‐Hung Chen
- Institute for Advanced Studies (IAS)College of Chemistry and Molecular SciencesWuhan UniversityWuhan430072HubeiP. R. China
| | - Aiwen Lei
- Institute for Advanced Studies (IAS)College of Chemistry and Molecular SciencesWuhan UniversityWuhan430072HubeiP. R. China
| | - Paul Knochel
- Department ChemieLudwig-Maximilians-Universität MünchenButenandtstrasse 5–13, Haus F81377MünchenGermany
| |
Collapse
|
4
|
Wei B, Zhang D, Chen Y, Lei A, Knochel P. Herstellung von polyfunktionellen Biarylderivaten durch Cyclolanthanierung von 2‐Bromobiarylen und heterocyclischen Analoga unter Verwendung von
n
Bu
2
LaCl⋅4 LiCl. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201908046] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Baosheng Wei
- Department Chemie Ludwig-Maximilians-Universität München Butenandtstrasse 5–13, Haus F 81377 München Deutschland
| | - Dongchao Zhang
- Institute for Advanced Studies (IAS) College of Chemistry and Molecular Sciences Wuhan University Wuhan 430072 Hubei VR China
| | - Yi‐Hung Chen
- Institute for Advanced Studies (IAS) College of Chemistry and Molecular Sciences Wuhan University Wuhan 430072 Hubei VR China
| | - Aiwen Lei
- Institute for Advanced Studies (IAS) College of Chemistry and Molecular Sciences Wuhan University Wuhan 430072 Hubei VR China
| | - Paul Knochel
- Department Chemie Ludwig-Maximilians-Universität München Butenandtstrasse 5–13, Haus F 81377 München Deutschland
| |
Collapse
|
5
|
Yang C, Wang J, Li J, Ma W, An K, He W, Jiang C. Visible-Light Induced Radical Silylation for the Synthesis of Dibenzosiloles via Dehydrogenative Cyclization. Adv Synth Catal 2018. [DOI: 10.1002/adsc.201800417] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Chao Yang
- School of Chemical Engineering; Nanjing University of Science and Technology; Nanjing Jiangsu 210094 People's Republic of China
| | - Jing Wang
- School of Medicine and Tsinghua-Peking Joint Centers for Life Science; Tsinghua University; Beijing 100084 People's Republic of China
| | - Jianhua Li
- School of Chemical Engineering; Nanjing University of Science and Technology; Nanjing Jiangsu 210094 People's Republic of China
| | - Wenchao Ma
- School of Chemical Engineering; Nanjing University of Science and Technology; Nanjing Jiangsu 210094 People's Republic of China
| | - Kun An
- School of Medicine and Tsinghua-Peking Joint Centers for Life Science; Tsinghua University; Beijing 100084 People's Republic of China
| | - Wei He
- School of Medicine and Tsinghua-Peking Joint Centers for Life Science; Tsinghua University; Beijing 100084 People's Republic of China
| | - Chao Jiang
- School of Chemical Engineering; Nanjing University of Science and Technology; Nanjing Jiangsu 210094 People's Republic of China
| |
Collapse
|
6
|
Murai M, Okada R, Asako S, Takai K. Rhodium-Catalyzed Silylative and Germylative Cyclization with Dehydrogenation Leading to 9-Sila- and 9-Germafluorenes: A Combined Experimental and Computational Mechanistic Study. Chemistry 2017; 23:10861-10870. [DOI: 10.1002/chem.201701579] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Indexed: 11/09/2022]
Affiliation(s)
- Masahito Murai
- Division of Applied Chemistry; Graduate School of Natural Science and Technology; Okayama University; 3-1-1 Tsushimanaka, Kita-ku Okayama 700-8530 Japan
| | - Ryo Okada
- Division of Applied Chemistry; Graduate School of Natural Science and Technology; Okayama University; 3-1-1 Tsushimanaka, Kita-ku Okayama 700-8530 Japan
| | - Sobi Asako
- Division of Applied Chemistry; Graduate School of Natural Science and Technology; Okayama University; 3-1-1 Tsushimanaka, Kita-ku Okayama 700-8530 Japan
| | - Kazuhiko Takai
- Division of Applied Chemistry; Graduate School of Natural Science and Technology; Okayama University; 3-1-1 Tsushimanaka, Kita-ku Okayama 700-8530 Japan
| |
Collapse
|
7
|
Elektrophile aromatische Substitution mit Siliciumelektrophilen: die katalytische Friedel‐Crafts‐C‐H‐Silylierung. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201608470] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
8
|
Bähr S, Oestreich M. Electrophilic Aromatic Substitution with Silicon Electrophiles: Catalytic Friedel-Crafts C-H Silylation. Angew Chem Int Ed Engl 2016; 56:52-59. [PMID: 27762042 DOI: 10.1002/anie.201608470] [Citation(s) in RCA: 119] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Indexed: 11/07/2022]
Abstract
Electrophilic aromatic substitution is a fundamental reaction in synthetic chemistry. It converts C-H bonds of sufficiently nucleophilic arenes into C-X and C-C bonds using either stoichiometrically added or catalytically generated electrophiles. These reactions proceed through Wheland complexes, cationic intermediates that rearomatize by proton release. Hence, these high-energy intermediates are nothing but protonated arenes and as such strong Brønsted acids. The formation of protons is an issue in those rare cases where the electrophilic aromatic substitution is reversible. This situation arises in the electrophilic silylation of C-H bonds as the energy of the intermediate Wheland complex is lowered by the β-silicon effect. As a consequence, protonation of the silylated arene is facile, and the reverse reaction usually occurs to afford the desilylated arene. Several new approaches to overcome this inherent challenge of C-H silylation by SE Ar were recently disclosed, and this Minireview summarizes this progress.
Collapse
Affiliation(s)
- Susanne Bähr
- Institut für Chemie, Technische Universität Berlin, Strasse des 17. Juni 115, 10623, Berlin, Germany
| | - Martin Oestreich
- Institut für Chemie, Technische Universität Berlin, Strasse des 17. Juni 115, 10623, Berlin, Germany
| |
Collapse
|
9
|
Zhang QW, An K, Liu LC, Guo S, Jiang C, Guo H, He W. Rhodium-Catalyzed Intramolecular C−H Silylation by Silacyclobutanes. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201602376] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Qing-Wei Zhang
- School of Pharmaceutical Sciences; Tsinghua University; Beijing 100084 China
| | - Kun An
- School of Pharmaceutical Sciences; Tsinghua University; Beijing 100084 China
| | - Li-Chuan Liu
- School of Pharmaceutical Sciences; Tsinghua University; Beijing 100084 China
| | - Shuangxi Guo
- School of Pharmaceutical Sciences; Tsinghua University; Beijing 100084 China
| | - Chenran Jiang
- School of Pharmaceutical Sciences; Tsinghua University; Beijing 100084 China
| | - Huifang Guo
- School of Pharmaceutical Sciences; Tsinghua University; Beijing 100084 China
| | - Wei He
- School of Pharmaceutical Sciences; Tsinghua University; Beijing 100084 China
| |
Collapse
|
10
|
Zhang QW, An K, Liu LC, Guo S, Jiang C, Guo H, He W. Rhodium-Catalyzed Intramolecular C-H Silylation by Silacyclobutanes. Angew Chem Int Ed Engl 2016; 55:6319-23. [PMID: 27073004 DOI: 10.1002/anie.201602376] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Indexed: 11/11/2022]
Abstract
Silacyclobutane was discovered to be an efficient C-H bond silylation reagent. Under the catalysis of Rh(I) /TMS-segphos, silacyclobutane undergoes sequential C-Si/C-H bond activations, affording a series of π-conjugated siloles in high yields and regioselectivities. The catalytic cycle was proposed to involve a rarely documented endocyclic β-hydride elimination of five-membered metallacycles, which after reductive elimination gave rise to a Si-Rh(I) species that is capable of C-H activation.
Collapse
Affiliation(s)
- Qing-Wei Zhang
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China
| | - Kun An
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China
| | - Li-Chuan Liu
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China
| | - Shuangxi Guo
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China
| | - Chenran Jiang
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China
| | - Huifang Guo
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China
| | - Wei He
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
11
|
Yin Q, Klare HFT, Oestreich M. Friedel-Crafts-Type Intermolecular C-H Silylation of Electron-Rich Arenes Initiated by Base-Metal Salts. Angew Chem Int Ed Engl 2016; 55:3204-7. [PMID: 26821860 DOI: 10.1002/anie.201510469] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Revised: 12/11/2015] [Indexed: 11/06/2022]
Abstract
An electrophilic aromatic substitution (SE Ar) with a catalytically generated silicon electrophile is reported. Essentially any commercially available base-metal salt acts as an initiator/catalyst when activated with NaBAr(F)4. The thus-generated Lewis acid then promotes the SE Ar of electron-rich arenes with hydrosilanes but not halosilanes. This new C-H silylation was optimized for FeCl2/NaBAr(F)4, affording good yields at catalyst loadings as low as 0.5 mol %. The procedure is exceedingly straightforward and comes close to typical Friedel-Crafts methods, where no added base is needed to absorb the released protons.
Collapse
Affiliation(s)
- Qin Yin
- Institut für Chemie, Technische Universität Berlin, Strasse des 17. Juni 115, 10623, Berlin, Germany
| | - Hendrik F T Klare
- Institut für Chemie, Technische Universität Berlin, Strasse des 17. Juni 115, 10623, Berlin, Germany
| | - Martin Oestreich
- Institut für Chemie, Technische Universität Berlin, Strasse des 17. Juni 115, 10623, Berlin, Germany.
| |
Collapse
|
12
|
Yin Q, Klare HFT, Oestreich M. Durch Nichtedelmetallsalze ausgelöste Friedel-Crafts-artige intermolekulare C-H-Silylierung von elektronenreichen Arenen. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201510469] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Qin Yin
- Institut für Chemie; Technische Universität Berlin; Straße des 17. Juni 115 10623 Berlin Deutschland
| | - Hendrik F. T. Klare
- Institut für Chemie; Technische Universität Berlin; Straße des 17. Juni 115 10623 Berlin Deutschland
| | - Martin Oestreich
- Institut für Chemie; Technische Universität Berlin; Straße des 17. Juni 115 10623 Berlin Deutschland
| |
Collapse
|