1
|
Kumar A, Madhurima K, Naganathan AN, Vallurupalli P, Sekhar A. Probing excited state 1Hα chemical shifts in intrinsically disordered proteins with a triple resonance-based CEST experiment: Application to a disorder-to-order switch. Methods 2023; 218:198-209. [PMID: 37607621 PMCID: PMC7615522 DOI: 10.1016/j.ymeth.2023.08.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/14/2023] [Accepted: 08/16/2023] [Indexed: 08/24/2023] Open
Abstract
Over 40% of eukaryotic proteomes and 15% of bacterial proteomes are predicted to be intrinsically disordered based on their amino acid sequence. Intrinsically disordered proteins (IDPs) exist as heterogeneous ensembles of interconverting conformations and pose a challenge to the structure-function paradigm by apparently functioning without possessing stable structural elements. IDPs play a prominent role in biological processes involving extensive intermolecular interaction networks and their inherently dynamic nature facilitates their promiscuous interaction with multiple structurally diverse partner molecules. NMR spectroscopy has made pivotal contributions to our understanding of IDPs because of its unique ability to characterize heterogeneity at atomic resolution. NMR methods such as Chemical Exchange Saturation Transfer (CEST) and relaxation dispersion have enabled the detection of 'invisible' excited states in biomolecules which are transiently and sparsely populated, yet central for function. Here, we develop a 1Hα CEST pulse sequence which overcomes the resonance overlap problem in the 1Hα-13Cα plane of IDPs by taking advantage of the superior resolution in the 1H-15N correlation spectrum. In this sequence, magnetization is transferred after 1H CEST using a triple resonance coherence transfer pathway from 1Hα (i) to 1HN(i + 1) during which the 15N(t1) and 1HN(t2) are frequency labelled. This approach is integrated with spin state-selective CEST for eliminating spurious dips in CEST profiles resulting from dipolar cross-relaxation. We apply this sequence to determine the excited state 1Hα chemical shifts of the intrinsically disordered DNA binding domain (CytRN) of the bacterial cytidine repressor (CytR), which transiently acquires a functional globally folded conformation. The structure of the excited state, calculated using 1Hα chemical shifts in conjunction with other excited state NMR restraints, is a three-helix bundle incorporating a helix-turn-helix motif that is vital for binding DNA.
Collapse
Affiliation(s)
- Ajith Kumar
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, Karnataka, India
| | - Kulkarni Madhurima
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, Karnataka, India
| | - Athi N Naganathan
- Department of Biotechnology, Bhupat & Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| | - Pramodh Vallurupalli
- Tata Institute of Fundamental Research Hyderabad, 36/P, Gopanpally Village, Serilingampally Mandal, Ranga Reddy District, Hyderabad 500046, India
| | - Ashok Sekhar
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, Karnataka, India.
| |
Collapse
|
2
|
Craft DL, Schuyler AD. nus-tool: A unified program for generating and analyzing sample schedules for nonuniformly sampled NMR experiments. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2023; 352:107458. [PMID: 37146525 PMCID: PMC10330440 DOI: 10.1016/j.jmr.2023.107458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/11/2023] [Accepted: 04/15/2023] [Indexed: 05/07/2023]
Abstract
Increases in digital resolution achieved by high-field NMR require increases in spectral width. Additionally, the ability to resolve two overlapping peaks requires a sufficiently long acquisition time. These constraints combine, so that achieving high resolution spectra on high-field magnets requires long experiment times when employing uniform sampling and Fourier Transform processing. These limitations may be addressed by using nonuniform sampling (NUS), but the complexity of the parameter space across the variety of available NUS schemes greatly hinders the establishment of optimal approaches and best practices. We address these challenges with nus-tool, which is a software package for generating and analyzing NUS schedules. The nus-tool software internally implements random sampling and exponentially biased sampling. Through pre-configured plug-ins, it also provides access to quantile sampling and Poisson gap sampling. The software computes the relative sensitivity, mean evolution time, point spread function, and peak-to-sidelobe ratio; all of which can be determined for a candidate sample schedule prior to running an experiment to verify expected sensitivity, resolution, and artifact suppression. The nus-tool package is freely available on the NMRbox platform through an interactive GUI and via the command line, which is especially useful for scripted workflows that investigate the effectiveness of various NUS schemes.
Collapse
Affiliation(s)
- D Levi Craft
- UConn Health, Molecular Biology and Biophysics, Farmington 06030, CT, USA
| | - Adam D Schuyler
- UConn Health, Molecular Biology and Biophysics, Farmington 06030, CT, USA.
| |
Collapse
|
3
|
Wong LE, Kim TH, Muhandiram DR, Forman-Kay JD, Kay LE. NMR Experiments for Studies of Dilute and Condensed Protein Phases: Application to the Phase-Separating Protein CAPRIN1. J Am Chem Soc 2020; 142:2471-2489. [DOI: 10.1021/jacs.9b12208] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Leo E. Wong
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Tae Hun Kim
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
- Hospital for Sick Children, Program in Molecular Medicine, 555 University Avenue, Toronto, Ontario M5G 1X8, Canada
| | - D. Ranjith Muhandiram
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Julie D. Forman-Kay
- Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
- Hospital for Sick Children, Program in Molecular Medicine, 555 University Avenue, Toronto, Ontario M5G 1X8, Canada
| | - Lewis E. Kay
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
- Hospital for Sick Children, Program in Molecular Medicine, 555 University Avenue, Toronto, Ontario M5G 1X8, Canada
| |
Collapse
|
4
|
Ban D, Smith CA, de Groot BL, Griesinger C, Lee D. Recent advances in measuring the kinetics of biomolecules by NMR relaxation dispersion spectroscopy. Arch Biochem Biophys 2017; 628:81-91. [PMID: 28576576 DOI: 10.1016/j.abb.2017.05.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 05/26/2017] [Accepted: 05/29/2017] [Indexed: 12/25/2022]
Abstract
Protein function can be modulated or dictated by the amplitude and timescale of biomolecular motion, therefore it is imperative to study protein dynamics. Nuclear Magnetic Resonance (NMR) spectroscopy is a powerful technique capable of studying timescales of motion that range from those faster than molecular reorientation on the picosecond timescale to those that occur in real-time. Across this entire regime, NMR observables can report on the amplitude of atomic motion, and the kinetics of atomic motion can be ascertained with a wide variety of experimental techniques from real-time to milliseconds and several nanoseconds to picoseconds. Still a four orders of magnitude window between several nanoseconds and tens of microseconds has remained elusive. Here, we highlight new relaxation dispersion NMR techniques that serve to cover this "hidden-time" window up to hundreds of nanoseconds that achieve atomic resolution while studying the molecule under physiological conditions.
Collapse
Affiliation(s)
- David Ban
- Department of Medicine, James Graham Brown Cancer Center, University of Louisville, 505 S. Hancock St., Louisville, KY 40202, USA
| | - Colin A Smith
- Department for Theoretical and Computational Biophysics, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, Göttingen, 37077 Germany; Department of Structural Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, Göttingen, 37077 Germany
| | - Bert L de Groot
- Department for Theoretical and Computational Biophysics, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, Göttingen, 37077 Germany
| | - Christian Griesinger
- Department of Structural Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, Göttingen, 37077 Germany
| | - Donghan Lee
- Department of Medicine, James Graham Brown Cancer Center, University of Louisville, 505 S. Hancock St., Louisville, KY 40202, USA.
| |
Collapse
|
5
|
Mao Y, Yao H, Wang H, Cheng P, Long D. Microsecond Timescale Dynamics of GDP-Bound Ras Underlies the Formation of Novel Inhibitor-Binding Pockets. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201608653] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Yunyun Mao
- School of Life Sciences; University of Science and Technology of China; 443 Huangshan Street, Hefei Anhui 230027 China
| | - Haijie Yao
- School of Life Sciences; University of Science and Technology of China; 443 Huangshan Street, Hefei Anhui 230027 China
| | - Hui Wang
- School of Life Sciences; University of Science and Technology of China; 443 Huangshan Street, Hefei Anhui 230027 China
| | - Peng Cheng
- School of Life Sciences; University of Science and Technology of China; 443 Huangshan Street, Hefei Anhui 230027 China
| | - Dong Long
- School of Life Sciences; University of Science and Technology of China; 443 Huangshan Street, Hefei Anhui 230027 China
- Hefei National Laboratory for Physical Sciences at the Microscale; University of Science and Technology of China, Hefei; Anhui 230027 China
| |
Collapse
|
6
|
Mao Y, Yao H, Wang H, Cheng P, Long D. Microsecond Timescale Dynamics of GDP-Bound Ras Underlies the Formation of Novel Inhibitor-Binding Pockets. Angew Chem Int Ed Engl 2016; 55:15629-15632. [DOI: 10.1002/anie.201608653] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2016] [Revised: 10/07/2016] [Indexed: 11/11/2022]
Affiliation(s)
- Yunyun Mao
- School of Life Sciences; University of Science and Technology of China; 443 Huangshan Street, Hefei Anhui 230027 China
| | - Haijie Yao
- School of Life Sciences; University of Science and Technology of China; 443 Huangshan Street, Hefei Anhui 230027 China
| | - Hui Wang
- School of Life Sciences; University of Science and Technology of China; 443 Huangshan Street, Hefei Anhui 230027 China
| | - Peng Cheng
- School of Life Sciences; University of Science and Technology of China; 443 Huangshan Street, Hefei Anhui 230027 China
| | - Dong Long
- School of Life Sciences; University of Science and Technology of China; 443 Huangshan Street, Hefei Anhui 230027 China
- Hefei National Laboratory for Physical Sciences at the Microscale; University of Science and Technology of China, Hefei; Anhui 230027 China
| |
Collapse
|