1
|
Tay HM, Tse YC, Docker A, Gateley C, Thompson AL, Kuhn H, Zhang Z, Beer PD. Halogen-Bonding Heteroditopic [2]Catenanes for Recognition of Alkali Metal/Halide Ion Pairs. Angew Chem Int Ed Engl 2023; 62:e202214785. [PMID: 36440816 PMCID: PMC10108176 DOI: 10.1002/anie.202214785] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/25/2022] [Accepted: 11/28/2022] [Indexed: 11/29/2022]
Abstract
The first examples of halogen bonding (XB) heteroditopic homo[2]catenanes were prepared by discrete Na+ template-directed assembly of oligo(ethylene glycol) units derived from XB donor-containing macrocycles and acyclic bis-azide precursors, followed by a CuI -mediated azide-alkyne cycloaddition macrocyclisation reaction. Extensive 1 H NMR spectroscopic studies show the [2]catenane hosts exhibit positive cooperative ion-pair recognition behaviour, wherein XB-mediated halide recognition is enhanced by alkali metal cation pre-complexation. Notably, subtle changes in the catenanes' oligo(ethylene glycol) chain length dramatically alters their ion-binding affinity, stoichiometry, complexation mode, and conformational dynamics. Solution-phase and single-crystal X-ray diffraction studies provide evidence for competing host-separated and direct-contact ion-pair binding modes. We further demonstrate the [2]catenanes are capable of extracting solid alkali-metal halide salts into organic media.
Collapse
Affiliation(s)
- Hui Min Tay
- Department of ChemistryUniversity of OxfordChemistry Research LaboratoryMansfield RoadOxfordOX1 3TAUK
| | - Yuen Cheong Tse
- Department of ChemistryUniversity of OxfordChemistry Research LaboratoryMansfield RoadOxfordOX1 3TAUK
- Department of ChemistryThe University of Hong KongPokfulam RoadHong KongP. R. China
| | - Andrew Docker
- Department of ChemistryUniversity of OxfordChemistry Research LaboratoryMansfield RoadOxfordOX1 3TAUK
| | - Christian Gateley
- Department of ChemistryUniversity of OxfordChemistry Research LaboratoryMansfield RoadOxfordOX1 3TAUK
| | - Amber L. Thompson
- Department of ChemistryUniversity of OxfordChemistry Research LaboratoryMansfield RoadOxfordOX1 3TAUK
| | - Heike Kuhn
- Department of ChemistryUniversity of OxfordChemistry Research LaboratoryMansfield RoadOxfordOX1 3TAUK
| | - Zongyao Zhang
- Department of ChemistryUniversity of OxfordChemistry Research LaboratoryMansfield RoadOxfordOX1 3TAUK
| | - Paul D. Beer
- Department of ChemistryUniversity of OxfordChemistry Research LaboratoryMansfield RoadOxfordOX1 3TAUK
| |
Collapse
|
2
|
Schaufelberger F, Seigel K, Ramström O. Hydrogen-Bond Catalysis of Imine Exchange in Dynamic Covalent Systems. Chemistry 2020; 26:15581-15588. [PMID: 32427370 DOI: 10.1002/chem.202001666] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Indexed: 12/28/2022]
Abstract
The reversibility of imine bonds has been exploited to great effect in the field of dynamic covalent chemistry, with applications such as preparation of functional systems, dynamic materials, molecular machines, and covalent organic frameworks. However, acid catalysis is commonly needed for efficient equilibration of imine mixtures. Herein, it is demonstrated that hydrogen bond donors such as thioureas and squaramides can catalyze the equilibration of dynamic imine systems under unprecedentedly mild conditions. Catalysis occurs in a range of solvents and in the presence of many sensitive additives, showing moderate to good rate accelerations for both imine metathesis and transimination with amines, hydrazines, and hydroxylamines. Furthermore, the catalyst proved simple to immobilize, introducing both reusability and extended control of the equilibration process.
Collapse
Affiliation(s)
- Fredrik Schaufelberger
- Department of Chemistry, KTH-Royal Institute of Technology, Teknikringen 36, 10044, Stockholm, Sweden
| | - Karolina Seigel
- Department of Chemistry, KTH-Royal Institute of Technology, Teknikringen 36, 10044, Stockholm, Sweden
| | - Olof Ramström
- Department of Chemistry, KTH-Royal Institute of Technology, Teknikringen 36, 10044, Stockholm, Sweden.,Department of Chemistry, University of Massachusetts Lowell, One University Ave., Lowell, MA, 01854, USA.,Department of Chemistry and Biomedical Sciences, Linnaeus University, 39182, Kalmar, Sweden
| |
Collapse
|
3
|
Shan W, Gao X, Lin Y, Jin G. Template‐Free Self‐Assembly of Molecular Trefoil Knots and Double Trefoil Knots Featuring Cp*Rh Building Blocks. Chemistry 2020; 26:5093-5099. [DOI: 10.1002/chem.202000525] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/15/2020] [Indexed: 11/10/2022]
Affiliation(s)
- Wei‐Long Shan
- State Key Laboratory of Molecular Engineering of PolymersShanghai Key Laboratory of Molecular Catalysis and Innovative MaterialsDepartment of ChemistryFudan University 220 Handan Road Shanghai 200433 P. R. China
- School of Chemistry and Chemical EngineeringAnhui University of Technology Maanshan 243002 P. R. China
| | - Xiang Gao
- State Key Laboratory of Molecular Engineering of PolymersShanghai Key Laboratory of Molecular Catalysis and Innovative MaterialsDepartment of ChemistryFudan University 220 Handan Road Shanghai 200433 P. R. China
| | - Yue‐Jian Lin
- State Key Laboratory of Molecular Engineering of PolymersShanghai Key Laboratory of Molecular Catalysis and Innovative MaterialsDepartment of ChemistryFudan University 220 Handan Road Shanghai 200433 P. R. China
| | - Guo‐Xin Jin
- State Key Laboratory of Molecular Engineering of PolymersShanghai Key Laboratory of Molecular Catalysis and Innovative MaterialsDepartment of ChemistryFudan University 220 Handan Road Shanghai 200433 P. R. China
| |
Collapse
|
4
|
Shen L, Cao N, Tong L, Zhang X, Wu G, Jiao T, Yin Q, Zhu J, Pan Y, Li H. Dynamic Covalent Self-Assembly Based on Oxime Condensation. Angew Chem Int Ed Engl 2018; 57:16486-16490. [PMID: 30334325 DOI: 10.1002/anie.201811025] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Indexed: 01/04/2023]
Abstract
Oxime, whose dynamic nature was reported to be switchable between ON/OFF by tuning the acidity, is employed in a novel type of dynamic covalent approach that is amenable to use in water for self-assembly of purely organic molecules with complex topology. In strongly acidic conditions, the dynamic nature of oxime is turned ON, allowing occurrence of error-checking and therefore a catenane and a macrocycle self-assembled in high yields. In neutral conditions, oxime ceases to be dynamic, which helps to trap the self-assembled products even when the driving forces of their formation are removed. We envision that this switchable behaviour might help, at least partially, to resolve a commonly encountered drawback of dynamic covalent chemistry, namely that the intrinsic stability of the self-assembled products containing dynamic bonds, such as imine or hydrazone, are often jeopardized by their reversible nature.
Collapse
Affiliation(s)
- Libo Shen
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - Ning Cao
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - Lu Tong
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - Xinjiang Zhang
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - Guangcheng Wu
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - Tianyu Jiao
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - Qi Yin
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - Jiaqi Zhu
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - Yuanjiang Pan
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - Hao Li
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| |
Collapse
|
5
|
Shen L, Cao N, Tong L, Zhang X, Wu G, Jiao T, Yin Q, Zhu J, Pan Y, Li H. Dynamic Covalent Self-Assembly Based on Oxime Condensation. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201811025] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Libo Shen
- Department of Chemistry; Zhejiang University; Hangzhou 310027 China
| | - Ning Cao
- Department of Chemistry; Zhejiang University; Hangzhou 310027 China
| | - Lu Tong
- Department of Chemistry; Zhejiang University; Hangzhou 310027 China
| | - Xinjiang Zhang
- Department of Chemistry; Zhejiang University; Hangzhou 310027 China
| | - Guangcheng Wu
- Department of Chemistry; Zhejiang University; Hangzhou 310027 China
| | - Tianyu Jiao
- Department of Chemistry; Zhejiang University; Hangzhou 310027 China
| | - Qi Yin
- Department of Chemistry; Zhejiang University; Hangzhou 310027 China
| | - Jiaqi Zhu
- Department of Chemistry; Zhejiang University; Hangzhou 310027 China
| | - Yuanjiang Pan
- Department of Chemistry; Zhejiang University; Hangzhou 310027 China
| | - Hao Li
- Department of Chemistry; Zhejiang University; Hangzhou 310027 China
| |
Collapse
|
6
|
Byrne JP, Blasco S, Aletti AB, Hessman G, Gunnlaugsson T. Formation of Self-Templated 2,6-Bis(1,2,3-triazol-4-yl)pyridine [2]Catenanes by Triazolyl Hydrogen Bonding: Selective Anion Hosts for Phosphate. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201603213] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Joseph P. Byrne
- School of Chemistry and Trinity Biomedical Sciences Institute (TBSI); Trinity College Dublin; The University of Dublin; Dublin 2 Ireland
- Departement für Chemie und Biochemie; Universität Bern; Freiestrasse 3 3012 Bern Switzerland
| | - Salvador Blasco
- School of Chemistry and Trinity Biomedical Sciences Institute (TBSI); Trinity College Dublin; The University of Dublin; Dublin 2 Ireland
| | - Anna B. Aletti
- School of Chemistry and Trinity Biomedical Sciences Institute (TBSI); Trinity College Dublin; The University of Dublin; Dublin 2 Ireland
| | - Gary Hessman
- School of Chemistry and Trinity Biomedical Sciences Institute (TBSI); Trinity College Dublin; The University of Dublin; Dublin 2 Ireland
| | - Thorfinnur Gunnlaugsson
- School of Chemistry and Trinity Biomedical Sciences Institute (TBSI); Trinity College Dublin; The University of Dublin; Dublin 2 Ireland
| |
Collapse
|
7
|
Byrne JP, Blasco S, Aletti AB, Hessman G, Gunnlaugsson T. Formation of Self-Templated 2,6-Bis(1,2,3-triazol-4-yl)pyridine [2]Catenanes by Triazolyl Hydrogen Bonding: Selective Anion Hosts for Phosphate. Angew Chem Int Ed Engl 2016; 55:8938-43. [DOI: 10.1002/anie.201603213] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Indexed: 01/17/2023]
Affiliation(s)
- Joseph P. Byrne
- School of Chemistry and Trinity Biomedical Sciences Institute (TBSI); Trinity College Dublin; The University of Dublin; Dublin 2 Ireland
- Departement für Chemie und Biochemie; Universität Bern; Freiestrasse 3 3012 Bern Switzerland
| | - Salvador Blasco
- School of Chemistry and Trinity Biomedical Sciences Institute (TBSI); Trinity College Dublin; The University of Dublin; Dublin 2 Ireland
| | - Anna B. Aletti
- School of Chemistry and Trinity Biomedical Sciences Institute (TBSI); Trinity College Dublin; The University of Dublin; Dublin 2 Ireland
| | - Gary Hessman
- School of Chemistry and Trinity Biomedical Sciences Institute (TBSI); Trinity College Dublin; The University of Dublin; Dublin 2 Ireland
| | - Thorfinnur Gunnlaugsson
- School of Chemistry and Trinity Biomedical Sciences Institute (TBSI); Trinity College Dublin; The University of Dublin; Dublin 2 Ireland
| |
Collapse
|