1
|
Pan Y, Cheng J, Zhu Y, Zhang J, Fan W, Chen X. Immunological nanomaterials to combat cancer metastasis. Chem Soc Rev 2024; 53:6399-6444. [PMID: 38745455 DOI: 10.1039/d2cs00968d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Metastasis causes greater than 90% of cancer-associated deaths, presenting huge challenges for detection and efficient treatment of cancer due to its high heterogeneity and widespread dissemination to various organs. Therefore, it is imperative to combat cancer metastasis, which is the key to achieving complete cancer eradication. Immunotherapy as a systemic approach has shown promising potential to combat metastasis. However, current clinical immunotherapies are not effective for all patients or all types of cancer metastases owing to insufficient immune responses. In recent years, immunological nanomaterials with intrinsic immunogenicity or immunomodulatory agents with efficient loading have been shown to enhance immune responses to eliminate metastasis. In this review, we would like to summarize various types of immunological nanomaterials against metastasis. Moreover, this review will summarize a series of immunological nanomaterial-mediated immunotherapy strategies to combat metastasis, including immunogenic cell death, regulation of chemokines and cytokines, improving the immunosuppressive tumour microenvironment, activation of the STING pathway, enhancing cytotoxic natural killer cell activity, enhancing antigen presentation of dendritic cells, and enhancing chimeric antigen receptor T cell therapy. Furthermore, the synergistic anti-metastasis strategies based on the combinational use of immunotherapy and other therapeutic modalities will also be introduced. In addition, the nanomaterial-mediated imaging techniques (e.g., optical imaging, magnetic resonance imaging, computed tomography, photoacoustic imaging, surface-enhanced Raman scattering, radionuclide imaging, etc.) for detecting metastasis and monitoring anti-metastasis efficacy are also summarized. Finally, the current challenges and future prospects of immunological nanomaterial-based anti-metastasis are also elucidated with the intention to accelerate its clinical translation.
Collapse
Affiliation(s)
- Yuanbo Pan
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China.
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, 310009, Zhejiang, China
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, 310009, China
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore 119074, Singapore.
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Junjie Cheng
- Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing, 210009, China
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore 119074, Singapore.
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Yang Zhu
- Department of Neurosurgery, Neurosurgery Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, Fujian, China.
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore 119074, Singapore.
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Jianmin Zhang
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China.
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, 310009, Zhejiang, China
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, 310009, China
| | - Wenpei Fan
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing, 211198, China.
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore 119074, Singapore.
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore
- Theranostics Center of Excellence (TCE), Yong Loo Lin School of Medicine, National University of Singapore, 11 Biopolis Way, Helios, Singapore 138667, Singapore
| |
Collapse
|
2
|
Park JE, Kim DH. Advanced Immunomodulatory Biomaterials for Therapeutic Applications. Adv Healthc Mater 2024:e2304496. [PMID: 38716543 DOI: 10.1002/adhm.202304496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 04/15/2024] [Indexed: 05/22/2024]
Abstract
The multifaceted biological defense system modulating complex immune responses against pathogens and foreign materials plays a critical role in tissue homeostasis and disease progression. Recently developed biomaterials that can specifically regulate immune responses, nanoparticles, graphene, and functional hydrogels have contributed to the advancement of tissue engineering as well as disease treatment. The interaction between innate and adaptive immunity, collectively determining immune responses, can be regulated by mechanobiological recognition and adaptation of immune cells to the extracellular microenvironment. Therefore, applying immunomodulation to tissue regeneration and cancer therapy involves manipulating the properties of biomaterials by tailoring their composition in the context of the immune system. This review provides a comprehensive overview of how the physicochemical attributes of biomaterials determine immune responses, focusing on the physical properties that influence innate and adaptive immunity. This review also underscores the critical aspect of biomaterial-based immune engineering for the development of novel therapeutics and emphasizes the importance of understanding the biomaterials-mediated immunological mechanisms and their role in modulating the immune system.
Collapse
Affiliation(s)
- Ji-Eun Park
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
| | - Dong-Hwee Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
- Department of Integrative Energy Engineering, College of Engineering, Korea University, Seoul, 02841, Republic of Korea
- Biomedical Research Center, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| |
Collapse
|
3
|
Yu X, Wang X, Yamazaki A. Mn-Si-based nanoparticles-enhanced inhibitory effect on tumor growth and metastasis in photo-immunotherapy. Colloids Surf B Biointerfaces 2023; 226:113314. [PMID: 37060652 DOI: 10.1016/j.colsurfb.2023.113314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/07/2023] [Accepted: 04/11/2023] [Indexed: 04/17/2023]
Abstract
The anticancer effect of phototherapy has been limited by some factors, including the easy degradation of photo agents, the complex tumor microenvironment, and the limited immune activation capacity, which impedes its efficiency in inhibiting tumor growth and tumor metastasis. Herein, Mn-doped mesoporous silica nanoparticles were synthesized to load the photo agent of IR 780, which were further coated with Mn (IMM). Notably, the combination of IMM and an 808 nm laser irradiation simultaneously inhibited the growth of primary tumors and distant untreated tumors in a bilateral animal model, which could be attributed to the protection of IMM to IR 780, the regulation functions to the tumor microenvironment, as well as the enhanced immune activation capacity. This work highlighted an alternative strategy for enhancing the inhibitory effect on both tumor growth and tumor metastasis in the combinational anticancer therapy of phototherapy and immunotherapy (photo-immunotherapy).
Collapse
Affiliation(s)
- Xueping Yu
- Graduate School of Creative Science and Engineering, Waseda University, 3-4-1 Shin-Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Xiupeng Wang
- Health and Medical Research Institute, Department of Life Science and Biotechnology, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan.
| | - Atsushi Yamazaki
- Graduate School of Creative Science and Engineering, Waseda University, 3-4-1 Shin-Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
| |
Collapse
|
4
|
Yu X, Wang X, Sun L, Yamazaki A, Li X. Tumor microenvironment regulation - enhanced radio - immunotherapy. BIOMATERIALS ADVANCES 2022; 138:212867. [PMID: 35913249 DOI: 10.1016/j.bioadv.2022.212867] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 04/28/2022] [Accepted: 05/13/2022] [Indexed: 06/15/2023]
Abstract
Radiotherapy (RT) is frequently utilized for cancer treatment in clinical practice and has been proved to have immune stimulation potency in recent years. However, its inhibitory effect on tumor growth, especially on tumor metastasis, is still limited by many factors, including the complex tumor microenvironment (TME). Therefore, the TME - regulating SiO2@MnO2 nanoparticles (SM NPs) were prepared and applied to the combination of RT and immunotherapy. In a bilateral animal model, SM NPs not only enhanced the inhibitory effect of RT on primary tumor growth, but also strengthened the abscopal effect to inhibit the growth of distant untreated tumors. As for the distant untreated tumor, 40% of mice showed complete inhibition of tumor growth and 40% showed a suppressed tumor growth. Moreover, SM NPs showed modulation functions for TME through inducing the increase in intracellular levels of oxygen and reactive oxygen species after their reaction with hydrogen peroxide and the main antioxidative agent glutathione in TME. Lastly, SM NPs also effectively induced the increase in the amounts of cytokines secreted by macrophage - like cells, indicating modulation functions for immune responses. This work highlighted a potential strategy of simultaneously inhibiting tumor growth and metastasis through the regulation of TME and immune responses by SM NPs - enhanced radio - immunotherapy.
Collapse
Affiliation(s)
- Xueping Yu
- Graduate School of Creative Science and Engineering, Waseda University, 3-4-1 Shin-Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Xiupeng Wang
- Health and Medical Research Institute, Department of Life Science and Biotechnology, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan.
| | - Lue Sun
- Health and Medical Research Institute, Department of Life Science and Biotechnology, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan
| | - Atsushi Yamazaki
- Graduate School of Creative Science and Engineering, Waseda University, 3-4-1 Shin-Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Xia Li
- Health and Medical Research Institute, Department of Life Science and Biotechnology, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan
| |
Collapse
|
5
|
Yu X, Wang X, Yamazaki A, Li X. Tumor microenvironment-regulated nanoplatforms for the inhibition of tumor growth and metastasis in chemo-immunotherapy. J Mater Chem B 2022; 10:3637-3647. [PMID: 35439801 DOI: 10.1039/d2tb00337f] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Chemotherapy is one of the major clinical anticancer therapies. However, its efficiency is limited by many factors, including the complex tumor microenvironment (TME). Herein, manganese-doped mesoporous silica nanoparticles (MM NPs) were constructed and applied to regulate the TME and enhance the efficiency of the combination of chemotherapy and immunotherapy (chemo-immunotherapy). Notably, the combination of MM NPs, doxorubicin hydrochloride, and immune checkpoint inhibitors enhanced the synergistic efficiency of chemo-immunotherapy in a bilateral animal model, which simultaneously inhibited the growth of primary tumors and distant untreated tumors. Moreover, Mn-doping endowed MSNs with six new regulatory functions for the TME by inducing glutathione depletion, ROS generation, oxygenation, cell-killing effect, immune activation, and degradation promotion. These results demonstrated that MM NPs with TME regulatory functions can potentially improve the efficiency of chemo-immunotherapy.
Collapse
Affiliation(s)
- Xueping Yu
- Graduate School of Creative Science and Engineering, Waseda University, 3-4-1 Shin-Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Xiupeng Wang
- Health and Medical Research Institute, Department of Life Science and Biotechnology, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan.
| | - Atsushi Yamazaki
- Graduate School of Creative Science and Engineering, Waseda University, 3-4-1 Shin-Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Xia Li
- Health and Medical Research Institute, Department of Life Science and Biotechnology, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan.
| |
Collapse
|
6
|
Nanotechnology-based products for cancer immunotherapy. Mol Biol Rep 2021; 49:1389-1412. [PMID: 34716502 PMCID: PMC8555726 DOI: 10.1007/s11033-021-06876-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 10/21/2021] [Indexed: 11/24/2022]
Abstract
Abstract Currently, nanoscale materials and scaffolds carrying antitumor agents to the tumor target site are practical approaches for cancer treatment. Immunotherapy is a modern approach to cancer treatment in which the body’s immune system adjusts to deal with cancer cells. Immuno-engineering is a new branch of regenerative medicine-based therapies that uses engineering principles by using biological tools to stimulate the immune system. Therefore, this branch’s final aim is to regulate distribution, release, and simultaneous placement of several immune factors at the tumor site, so then upgrade the current treatment methods and subsequently improve the immune system’s handling. In this paper, recent research and prospects of nanotechnology-based cancer immunotherapy have been presented and discussed. Furthermore, different encouraging nanotechnology-based plans for targeting various innate and adaptive immune systems will also be discussed. Due to novel views in nanotechnology strategies, this field can address some biological obstacles, although studies are ongoing. Graphic abstract ![]()
Collapse
|
7
|
Ho W, Gao M, Li F, Li Z, Zhang X, Xu X. Next-Generation Vaccines: Nanoparticle-Mediated DNA and mRNA Delivery. Adv Healthc Mater 2021; 10:e2001812. [PMID: 33458958 PMCID: PMC7995055 DOI: 10.1002/adhm.202001812] [Citation(s) in RCA: 130] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 12/06/2020] [Indexed: 01/07/2023]
Abstract
Nucleic acid vaccines are a method of immunization aiming to elicit immune responses akin to live attenuated vaccines. In this method, DNA or messenger RNA (mRNA) sequences are delivered to the body to generate proteins, which mimic disease antigens to stimulate the immune response. Advantages of nucleic acid vaccines include stimulation of both cell-mediated and humoral immunity, ease of design, rapid adaptability to changing pathogen strains, and customizable multiantigen vaccines. To combat the SARS-CoV-2 pandemic, and many other diseases, nucleic acid vaccines appear to be a promising method. However, aid is needed in delivering the fragile DNA/mRNA payload. Many delivery strategies have been developed to elicit effective immune stimulation, yet no nucleic acid vaccine has been FDA-approved for human use. Nanoparticles (NPs) are one of the top candidates to mediate successful DNA/mRNA vaccine delivery due to their unique properties, including unlimited possibilities for formulations, protective capacity, simultaneous loading, and delivery potential of multiple DNA/mRNA vaccines. This review will summarize the many varieties of novel NP formulations for DNA and mRNA vaccine delivery as well as give the reader a brief synopsis of NP vaccine clinical trials. Finally, the future perspectives and challenges for NP-mediated nucleic acid vaccines will be explored.
Collapse
Affiliation(s)
- William Ho
- Department of Chemical and Materials EngineeringNew Jersey Institute of TechnologyNewarkNJ07102USA
| | - Mingzhu Gao
- Engineering Research Center of Cell & Therapeutic AntibodyMinistry of Educationand School of PharmacyShanghai Jiao Tong University800 Dongchuan RoadShanghai200240P. R. China
| | - Fengqiao Li
- Department of Chemical and Materials EngineeringNew Jersey Institute of TechnologyNewarkNJ07102USA
| | - Zhongyu Li
- Department of Chemical and Materials EngineeringNew Jersey Institute of TechnologyNewarkNJ07102USA
| | - Xue‐Qing Zhang
- Engineering Research Center of Cell & Therapeutic AntibodyMinistry of Educationand School of PharmacyShanghai Jiao Tong University800 Dongchuan RoadShanghai200240P. R. China
| | - Xiaoyang Xu
- Department of Chemical and Materials EngineeringNew Jersey Institute of TechnologyNewarkNJ07102USA
- Department of Biomedical EngineeringNew Jersey Institute of Technology323 Dr Martin Luther King Jr BlvdNewarkNJ07102USA
| |
Collapse
|
8
|
Yang Y, Tang J, Song H, Yang Y, Gu Z, Fu J, Liu Y, Zhang M, Qiao ZA, Yu C. Dendritic Mesoporous Silica Nanoparticle Adjuvants Modified with Binuclear Aluminum Complex: Coordination Chemistry Dictates Adjuvanticity. Angew Chem Int Ed Engl 2021; 59:19610-19617. [PMID: 32876984 DOI: 10.1002/anie.202006861] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 08/10/2020] [Indexed: 12/14/2022]
Abstract
Aluminum-containing adjuvants used in vaccine formulations suffer from low cellular immunity, severe aggregation, and accumulation in the brain. Conventional aluminosilicates widely used in the chemical industry focus mainly on acidic sites for catalytic applications, but they are rarely used as adjuvants. Reported here is an innovative "ligand-assisted steric hindrance" strategy to create a high density of six-coordinate VI Al-OH groups with basicity on dendritic mesoporous silica nanoparticles as new nanoadjuvants. Compared to four-coordinate IV Al-modified counterparts, VI Al-OH-rich aluminosilicate nanoadjuvants enhance cellular delivery of antigens and provoke stronger cellular immunity. Moreover, the aluminum accumulation in the brain is more reduced than that with a commercial adjuvant. These results show that coordination chemistry can be used to control the adjuvanticity, providing new understanding in the development of next-generation vaccine adjuvants.
Collapse
Affiliation(s)
- Yang Yang
- Australian Institute for Bioengineering and Nanotechnology, UQ-JLU Joint Research Centre for Future Materials, The University of Queensland, St Lucia, Brisbane, QLD, 4072, Australia
| | - Jie Tang
- Australian Institute for Bioengineering and Nanotechnology, UQ-JLU Joint Research Centre for Future Materials, The University of Queensland, St Lucia, Brisbane, QLD, 4072, Australia
| | - Hao Song
- Australian Institute for Bioengineering and Nanotechnology, UQ-JLU Joint Research Centre for Future Materials, The University of Queensland, St Lucia, Brisbane, QLD, 4072, Australia
| | - Yannan Yang
- Australian Institute for Bioengineering and Nanotechnology, UQ-JLU Joint Research Centre for Future Materials, The University of Queensland, St Lucia, Brisbane, QLD, 4072, Australia
| | - Zhengying Gu
- Australian Institute for Bioengineering and Nanotechnology, UQ-JLU Joint Research Centre for Future Materials, The University of Queensland, St Lucia, Brisbane, QLD, 4072, Australia.,School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China
| | - Jianye Fu
- Australian Institute for Bioengineering and Nanotechnology, UQ-JLU Joint Research Centre for Future Materials, The University of Queensland, St Lucia, Brisbane, QLD, 4072, Australia
| | - Yang Liu
- Australian Institute for Bioengineering and Nanotechnology, UQ-JLU Joint Research Centre for Future Materials, The University of Queensland, St Lucia, Brisbane, QLD, 4072, Australia.,School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China
| | - Min Zhang
- Australian Institute for Bioengineering and Nanotechnology, UQ-JLU Joint Research Centre for Future Materials, The University of Queensland, St Lucia, Brisbane, QLD, 4072, Australia.,School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China
| | - Zhen-An Qiao
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, Jilin, 130012, China
| | - Chengzhong Yu
- Australian Institute for Bioengineering and Nanotechnology, UQ-JLU Joint Research Centre for Future Materials, The University of Queensland, St Lucia, Brisbane, QLD, 4072, Australia.,School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China
| |
Collapse
|
9
|
Yang Y, Tang J, Song H, Yang Y, Gu Z, Fu J, Liu Y, Zhang M, Qiao Z, Yu C. Dendritic Mesoporous Silica Nanoparticle Adjuvants Modified with Binuclear Aluminum Complex: Coordination Chemistry Dictates Adjuvanticity. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202006861] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Yang Yang
- Australian Institute for Bioengineering and Nanotechnology UQ-JLU Joint Research Centre for Future Materials The University of Queensland St Lucia Brisbane QLD 4072 Australia
| | - Jie Tang
- Australian Institute for Bioengineering and Nanotechnology UQ-JLU Joint Research Centre for Future Materials The University of Queensland St Lucia Brisbane QLD 4072 Australia
| | - Hao Song
- Australian Institute for Bioengineering and Nanotechnology UQ-JLU Joint Research Centre for Future Materials The University of Queensland St Lucia Brisbane QLD 4072 Australia
| | - Yannan Yang
- Australian Institute for Bioengineering and Nanotechnology UQ-JLU Joint Research Centre for Future Materials The University of Queensland St Lucia Brisbane QLD 4072 Australia
| | - Zhengying Gu
- Australian Institute for Bioengineering and Nanotechnology UQ-JLU Joint Research Centre for Future Materials The University of Queensland St Lucia Brisbane QLD 4072 Australia
- School of Chemistry and Molecular Engineering East China Normal University Shanghai 200241 P. R. China
| | - Jianye Fu
- Australian Institute for Bioengineering and Nanotechnology UQ-JLU Joint Research Centre for Future Materials The University of Queensland St Lucia Brisbane QLD 4072 Australia
| | - Yang Liu
- Australian Institute for Bioengineering and Nanotechnology UQ-JLU Joint Research Centre for Future Materials The University of Queensland St Lucia Brisbane QLD 4072 Australia
- School of Chemistry and Molecular Engineering East China Normal University Shanghai 200241 P. R. China
| | - Min Zhang
- Australian Institute for Bioengineering and Nanotechnology UQ-JLU Joint Research Centre for Future Materials The University of Queensland St Lucia Brisbane QLD 4072 Australia
- School of Chemistry and Molecular Engineering East China Normal University Shanghai 200241 P. R. China
| | - Zhen‐An Qiao
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry College of Chemistry Jilin University Changchun Jilin 130012 China
| | - Chengzhong Yu
- Australian Institute for Bioengineering and Nanotechnology UQ-JLU Joint Research Centre for Future Materials The University of Queensland St Lucia Brisbane QLD 4072 Australia
- School of Chemistry and Molecular Engineering East China Normal University Shanghai 200241 P. R. China
| |
Collapse
|
10
|
Yan S, Luo Z, Li Z, Wang Y, Tao J, Gong C, Liu X. Improving Cancer Immunotherapy Outcomes Using Biomaterials. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202002780] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Shuangqian Yan
- Department of Chemistry and the N.1 institute for health National University of Singapore Singapore 117543 Singapore
| | - Zichao Luo
- Department of Chemistry and the N.1 institute for health National University of Singapore Singapore 117543 Singapore
| | - Zhenglin Li
- Department of Chemistry and the N.1 institute for health National University of Singapore Singapore 117543 Singapore
| | - Yu Wang
- SZU-NUS Collaborative Center and International Collaborative Laboratory of 2D Materials for Optoelectronic Science & Technology of Ministry of Education Institute of Microscale Optoelectronics Shenzhen University Shenzhen 518060 China
| | - Jun Tao
- The Second Affiliated Hospital of Nanchang University 1 Minde Road Nanchang 330000 P. R. China
| | - Changyang Gong
- State Key Laboratory of Biotherapy Collaborative Innovation Center of Biotherapy West China Hospital Sichuan University No. 17, Section 3, Renmin South Rd. Chengdu 610041 P. R. China
| | - Xiaogang Liu
- Department of Chemistry and the N.1 institute for health National University of Singapore Singapore 117543 Singapore
- Joint School of National University of Singapore and Tianjin University International Campus of Tianjin University Fuzhou 350207 P. R. China
- SZU-NUS Collaborative Center and International Collaborative Laboratory of 2D Materials for Optoelectronic Science & Technology of Ministry of Education Institute of Microscale Optoelectronics Shenzhen University Shenzhen 518060 China
| |
Collapse
|
11
|
Yan S, Luo Z, Li Z, Wang Y, Tao J, Gong C, Liu X. Improving Cancer Immunotherapy Outcomes Using Biomaterials. Angew Chem Int Ed Engl 2020; 59:17332-17343. [PMID: 32297434 DOI: 10.1002/anie.202002780] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Indexed: 02/05/2023]
Affiliation(s)
- Shuangqian Yan
- Department of Chemistry and the N.1 institute for health National University of Singapore Singapore 117543 Singapore
| | - Zichao Luo
- Department of Chemistry and the N.1 institute for health National University of Singapore Singapore 117543 Singapore
| | - Zhenglin Li
- Department of Chemistry and the N.1 institute for health National University of Singapore Singapore 117543 Singapore
| | - Yu Wang
- SZU-NUS Collaborative Center and International Collaborative Laboratory of 2D Materials for Optoelectronic Science & Technology of Ministry of Education Institute of Microscale Optoelectronics Shenzhen University Shenzhen 518060 China
| | - Jun Tao
- The Second Affiliated Hospital of Nanchang University 1 Minde Road Nanchang 330000 P. R. China
| | - Changyang Gong
- State Key Laboratory of Biotherapy Collaborative Innovation Center of Biotherapy West China Hospital Sichuan University No. 17, Section 3, Renmin South Rd. Chengdu 610041 P. R. China
| | - Xiaogang Liu
- Department of Chemistry and the N.1 institute for health National University of Singapore Singapore 117543 Singapore
- Joint School of National University of Singapore and Tianjin University International Campus of Tianjin University Fuzhou 350207 P. R. China
- SZU-NUS Collaborative Center and International Collaborative Laboratory of 2D Materials for Optoelectronic Science & Technology of Ministry of Education Institute of Microscale Optoelectronics Shenzhen University Shenzhen 518060 China
| |
Collapse
|
12
|
Ding B, Zheng P, Jiang F, Zhao Y, Wang M, Chang M, Ma P, Lin J. MnO x Nanospikes as Nanoadjuvants and Immunogenic Cell Death Drugs with Enhanced Antitumor Immunity and Antimetastatic Effect. Angew Chem Int Ed Engl 2020; 59:16381-16384. [PMID: 32484598 DOI: 10.1002/anie.202005111] [Citation(s) in RCA: 202] [Impact Index Per Article: 50.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/21/2020] [Indexed: 12/22/2022]
Abstract
Despite the widespread applications of manganese oxide nanomaterials (MONs) in biomedicine, the intrinsic immunogenicity of MONs is still unclear. MnOx nanospikes (NSs) as tumor microenvironment (TME)-responsive nanoadjuvants and immunogenic cell death (ICD) drugs are proposed for cancer nanovaccine-based immunotherapy. MnOx NSs with large mesoporous structures show ultrahigh loading efficiencies for ovalbumin and tumor cell fragment. The combination of ICD via chemodynamic therapy and ferroptosis inductions, as well as antigen stimulations, presents a better synergistic immunopotentiation action. Furthermore, the obtained nanovaccines achieve TME-responsive magnetic resonance/photoacoustic dual-mode imaging contrasts, while effectively inhibiting primary/distal tumor growth and tumor metastasis.
Collapse
Affiliation(s)
- Binbin Ding
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China.,University of Science and Technology of China, Hefei, 230026, China
| | - Pan Zheng
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Fan Jiang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China.,University of Science and Technology of China, Hefei, 230026, China
| | - Yajie Zhao
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China.,University of Science and Technology of China, Hefei, 230026, China
| | - Meifang Wang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China.,University of Science and Technology of China, Hefei, 230026, China
| | - Mengyu Chang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China.,University of Science and Technology of China, Hefei, 230026, China
| | - Ping'an Ma
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China.,University of Science and Technology of China, Hefei, 230026, China
| | - Jun Lin
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China.,University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
13
|
Ding B, Zheng P, Jiang F, Zhao Y, Wang M, Chang M, Ma P, Lin J. MnO
x
Nanospikes as Nanoadjuvants and Immunogenic Cell Death Drugs with Enhanced Antitumor Immunity and Antimetastatic Effect. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202005111] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Binbin Ding
- State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied ChemistryChinese Academy of Sciences Changchun 130022 China
- University of Science and Technology of China Hefei 230026 China
| | - Pan Zheng
- Key Laboratory of Polymer EcomaterialsChangchun Institute of Applied ChemistryChinese Academy of Sciences Changchun 130022 China
| | - Fan Jiang
- State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied ChemistryChinese Academy of Sciences Changchun 130022 China
- University of Science and Technology of China Hefei 230026 China
| | - Yajie Zhao
- State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied ChemistryChinese Academy of Sciences Changchun 130022 China
- University of Science and Technology of China Hefei 230026 China
| | - Meifang Wang
- State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied ChemistryChinese Academy of Sciences Changchun 130022 China
- University of Science and Technology of China Hefei 230026 China
| | - Mengyu Chang
- State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied ChemistryChinese Academy of Sciences Changchun 130022 China
- University of Science and Technology of China Hefei 230026 China
| | - Ping'an Ma
- State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied ChemistryChinese Academy of Sciences Changchun 130022 China
- University of Science and Technology of China Hefei 230026 China
| | - Jun Lin
- State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied ChemistryChinese Academy of Sciences Changchun 130022 China
- University of Science and Technology of China Hefei 230026 China
| |
Collapse
|
14
|
Ding B, Shao S, Yu C, Teng B, Wang M, Cheng Z, Wong KL, Ma P, Lin J. Large-Pore Mesoporous-Silica-Coated Upconversion Nanoparticles as Multifunctional Immunoadjuvants with Ultrahigh Photosensitizer and Antigen Loading Efficiency for Improved Cancer Photodynamic Immunotherapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1802479. [PMID: 30387197 DOI: 10.1002/adma.201802479] [Citation(s) in RCA: 195] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 09/27/2018] [Indexed: 05/21/2023]
Abstract
Reported immunoadjuvants still have many limitations, such as inferior cellular uptake capacity and biocompatibility, overly large particle sizes, single function, and unsatisfactory therapeutic efficacy. Here, large-pore mesoporous-silica-coated upconversion nanoparticles (UCMSs) with a size of less than 100 nm are successfully prepared by a typical silica sol-gel reaction using mesitylene as a pore-swelling agent and are applied as a novel immunoadjuvant. The obtained UCMSs not only show significantly higher loadings for the photosensitizers merocyanine 540 (MC540), model proteins (chicken ovalbumin (OVA)), and tumor antigens (tumor cell fragment (TF)), but also are successfully employed for highly efficient in vivo vaccine delivery. The prepared UCMSs-MC540-OVA under 980 nm near-infrared irradiation shows the best synergistic immunopotentiation action, verified by the strongest Th1 and Th2 immune responses and the highest frequency of CD4+ , CD8+ , and effector-memory T cells. Additionally, nanovaccines UCMSs-MC540-TF can more effectively inhibit tumor growth and increase the survival of colon cancer (CT26)-tumor-bearing BALB/c mice compared with either photodynamic therapy or immunological therapy alone, suggesting the enhanced immunotherapy efficacy and clinical potential of UCMSs as immunoadjuvants for cancer immunotherapy.
Collapse
Affiliation(s)
- Binbin Ding
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- University of Science and Technology of China, Hefei, 230026, China
| | - Shuai Shao
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- Changchun University of Science and Technology, Changchun, 130022, China
| | - Chang Yu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Bo Teng
- Department of Otolaryngology Head and Neck Surgery, The Second Hospital, Jilin University, Changchun, 130041, China
| | - Meifang Wang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- University of Science and Technology of China, Hefei, 230026, China
| | - Ziyong Cheng
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Ka-Leung Wong
- Department of Chemistry, Hong Kong Baptist University, Kowloon, Hong Kong S.A.R., 999077, P. R. China
| | - Ping'an Ma
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Jun Lin
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| |
Collapse
|
15
|
Liang X, Duan J, Li X, Zhu X, Chen Y, Wang X, Sun H, Kong D, Li C, Yang J. Improved vaccine-induced immune responses via a ROS-triggered nanoparticle-based antigen delivery system. NANOSCALE 2018; 10:9489-9503. [PMID: 29675543 DOI: 10.1039/c8nr00355f] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Subunit vaccines that are designed based on recombinant antigens or peptides have shown promising potential as viable substitutes for traditional vaccines due to their better safety and specificity. However, the induction of adequate in vivo immune responses with appropriate effectiveness remains a major challenge for vaccine development. More recently, the implementation of a nanoparticle-based antigen delivery system has been considered a promising approach to improve the in vivo efficacy for subunit vaccine development. Thus, we have designed and prepared a nanoparticle-based antigen delivery system composed of three-armed PLGA, which is conjugated to PEG via the peroxalate ester bond (3s-PLGA-PO-PEG) and PEI as a cationic adjuvant (PPO NPs). It is known that during a foreign pathogen attack, NADPH, an oxidase, of the host organism is activated and generates an elevated level of reactive oxygen species, hydrogen peroxide (H2O2) primarily, as a defensive mechanism. Considering the sensitivity of the peroxalate ester bond to H2O2 and the cationic property of PEI for the induction of immune responses, this 3s-PLGA-PO-PEG/PEI antigen delivery system is expected to be both ROS responsive and facilitative in antigen uptake without severe toxicity that has been reported with cationic adjuvants. Indeed, our results demonstrated excellent loading capacity and in vitro stability of the PPO NPs encapsulated with the model antigen, ovalbumin (OVA). Co-culturing of bone marrow dendritic cells with the PPO NPs also led to enhanced dendritic cell maturation, antigen uptake, enhanced lysosomal escape, antigen cross-presentation and in vitro CD8+ T cell activation. In vivo experiments using mice further revealed that the administration of the PPO nanovaccine induced robust OVA-specific antibody production, upregulation of splenic CD4+ and CD8+ T cell proportions as well as an increase in memory T cell generation. In summary, we report here a ROS-triggered nanoparticle-based antigen delivery system that could be employed to promote the in vivo efficacy of vaccine-induced immune responses.
Collapse
Affiliation(s)
- Xiaoyu Liang
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin 300192, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Yang Y, Lu Y, Abbaraju PL, Zhang J, Zhang M, Xiang G, Yu C. Multi-shelled Dendritic Mesoporous Organosilica Hollow Spheres: Roles of Composition and Architecture in Cancer Immunotherapy. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201701550] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Yannan Yang
- Australian Institute for Bioengineering and Nanotechnology; The University of Queensland; St Lucia Brisbane QLD 4072 Australia
| | - Yao Lu
- Australian Institute for Bioengineering and Nanotechnology; The University of Queensland; St Lucia Brisbane QLD 4072 Australia
- School of Pharmacy; Huazhong University of Science and Technology; Wuhan Hubei 430030 China
| | - Prasanna Lakshmi Abbaraju
- Australian Institute for Bioengineering and Nanotechnology; The University of Queensland; St Lucia Brisbane QLD 4072 Australia
| | - Jun Zhang
- Australian Institute for Bioengineering and Nanotechnology; The University of Queensland; St Lucia Brisbane QLD 4072 Australia
| | - Min Zhang
- Australian Institute for Bioengineering and Nanotechnology; The University of Queensland; St Lucia Brisbane QLD 4072 Australia
| | - Guangya Xiang
- School of Pharmacy; Huazhong University of Science and Technology; Wuhan Hubei 430030 China
| | - Chengzhong Yu
- Australian Institute for Bioengineering and Nanotechnology; The University of Queensland; St Lucia Brisbane QLD 4072 Australia
| |
Collapse
|
17
|
Yang Y, Lu Y, Abbaraju PL, Zhang J, Zhang M, Xiang G, Yu C. Multi-shelled Dendritic Mesoporous Organosilica Hollow Spheres: Roles of Composition and Architecture in Cancer Immunotherapy. Angew Chem Int Ed Engl 2017; 56:8446-8450. [DOI: 10.1002/anie.201701550] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 03/19/2017] [Indexed: 01/07/2023]
Affiliation(s)
- Yannan Yang
- Australian Institute for Bioengineering and Nanotechnology; The University of Queensland; St Lucia Brisbane QLD 4072 Australia
| | - Yao Lu
- Australian Institute for Bioengineering and Nanotechnology; The University of Queensland; St Lucia Brisbane QLD 4072 Australia
- School of Pharmacy; Huazhong University of Science and Technology; Wuhan Hubei 430030 China
| | - Prasanna Lakshmi Abbaraju
- Australian Institute for Bioengineering and Nanotechnology; The University of Queensland; St Lucia Brisbane QLD 4072 Australia
| | - Jun Zhang
- Australian Institute for Bioengineering and Nanotechnology; The University of Queensland; St Lucia Brisbane QLD 4072 Australia
| | - Min Zhang
- Australian Institute for Bioengineering and Nanotechnology; The University of Queensland; St Lucia Brisbane QLD 4072 Australia
| | - Guangya Xiang
- School of Pharmacy; Huazhong University of Science and Technology; Wuhan Hubei 430030 China
| | - Chengzhong Yu
- Australian Institute for Bioengineering and Nanotechnology; The University of Queensland; St Lucia Brisbane QLD 4072 Australia
| |
Collapse
|
18
|
Hu X, Wu T, Bao Y, Zhang Z. Nanotechnology based therapeutic modality to boost anti-tumor immunity and collapse tumor defense. J Control Release 2017; 256:26-45. [PMID: 28434891 DOI: 10.1016/j.jconrel.2017.04.026] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 04/15/2017] [Accepted: 04/18/2017] [Indexed: 12/19/2022]
Abstract
Cancer is still the leading cause of death. While traditional treatments such as surgery, chemotherapy and radiotherapy play dominating roles, recent breakthroughs in cancer immunotherapy indicate that the influence of immune system on cancer development is virtually beyond our expectation. Manipulating the immune system to fight against cancer has been thriving in recent years. Further understanding of tumor anatomy provides opportunities to put a brake on immunosuppression by overcoming tumor intrinsic resistance or modulating tumor microenvironment. Nanotechnology which provides versatile engineered approaches to enhance therapeutic effects may potentially contribute to the development of future cancer treatment modality. In this review, we will focus on the application of nanotechnology both in boosting anti-tumor immunity and collapsing tumor defense.
Collapse
Affiliation(s)
| | | | - Yuling Bao
- Tongji School of Pharmacy, PR China; Department of Pharmacy, Tongji Hospital, PR China
| | - Zhiping Zhang
- Tongji School of Pharmacy, PR China; National Engineering Research Center for Nanomedicine, PR China; Hubei Engineering Research Center for Novel Drug Delivery System, HuaZhong University of Science and Technology, Wuhan 430030, PR China.
| |
Collapse
|