Zhang Y, Chen L, Jia Y. Total Synthesis of Pallamolides A-E.
Angew Chem Int Ed Engl 2024;
63:e202319127. [PMID:
38504637 DOI:
10.1002/anie.202319127]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/12/2024] [Accepted: 03/19/2024] [Indexed: 03/21/2024]
Abstract
We have achieved the first total synthesis of pallamolides A-E. Of these compounds, pallamolides B-E possess intriguing tetracyclic skeletons with novel intramolecular transesterifications. Key transformations include highly diastereoselective sequential Michael addition reactions to construct the bicyclo[2.2.2]octane core with the simultaneous generation of two quaternary carbon centers, a one-pot SmI2-mediated intramolecular ketyl-enoate cyclization/ketone reduction to generate the key oxabicyclo[3.3.1]nonane moiety, and an acid-mediated deprotection/oxa-Michael addition/β-hydroxy elimination cascade sequence to assemble the tetracyclic pallamolide skeleton. Kinetic resolution of ketone 14 through Corey-Bakshi-Shibata reduction enabled the asymmetric synthesis of pallamolides A-E.
Collapse