1
|
Le HX, Nguyen KD, Phan NTS, Le HV, Nguyen TT. t
‐BuONa‐Mediated Redox Condensation between
o‐
Nitroanilines and Benzyl Alcohols towards 2‐Phenyl Benzimidazoles under Transition‐Metal‐Free Conditions. ChemistrySelect 2023. [DOI: 10.1002/slct.202204024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Affiliation(s)
- Huy X. Le
- Faculty of Chemical Engineering Ho Chi Minh City University of Technology (HCMUT) 268 Ly Thuong Kiet, District 10 Ho Chi Minh City Vietnam
- Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc District Ho Chi Minh City Vietnam
| | - Khoa D. Nguyen
- Faculty of Chemical Engineering Ho Chi Minh City University of Technology (HCMUT) 268 Ly Thuong Kiet, District 10 Ho Chi Minh City Vietnam
- Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc District Ho Chi Minh City Vietnam
| | - Nam T. S. Phan
- Faculty of Chemical Engineering Ho Chi Minh City University of Technology (HCMUT) 268 Ly Thuong Kiet, District 10 Ho Chi Minh City Vietnam
- Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc District Ho Chi Minh City Vietnam
| | - Ha V. Le
- Faculty of Chemical Engineering Ho Chi Minh City University of Technology (HCMUT) 268 Ly Thuong Kiet, District 10 Ho Chi Minh City Vietnam
- Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc District Ho Chi Minh City Vietnam
| | - Tung T. Nguyen
- Faculty of Chemical Engineering Ho Chi Minh City University of Technology (HCMUT) 268 Ly Thuong Kiet, District 10 Ho Chi Minh City Vietnam
- Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc District Ho Chi Minh City Vietnam
| |
Collapse
|
2
|
Dai K, Chen Q, Xie W, Lu K, Yan Z, Peng M, Li C, Tu Y, Ding T. Facile Benzylic Alkylation of Arenes with Alcohols by Catalysis with Spirocyclic NHC Ir
III
Pincer Complex. Angew Chem Int Ed Engl 2022; 61:e202206446. [DOI: 10.1002/anie.202206446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Kun‐Long Dai
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs Shanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Qi‐Long Chen
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering Lanzhou University Lanzhou 730000 P. R. China
| | - Wen‐Ping Xie
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs Shanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Ka Lu
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering Lanzhou University Lanzhou 730000 P. R. China
| | - Zhi‐Bo Yan
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering Lanzhou University Lanzhou 730000 P. R. China
| | - Meng Peng
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering Lanzhou University Lanzhou 730000 P. R. China
| | - Chang‐Kun Li
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs Shanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Yong‐Qiang Tu
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs Shanghai Jiao Tong University Shanghai 200240 P. R. China
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering Lanzhou University Lanzhou 730000 P. R. China
| | - Tong‐Mei Ding
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs Shanghai Jiao Tong University Shanghai 200240 P. R. China
| |
Collapse
|
3
|
Wu X, Ma W, Tang W, Xue D, Xiao J, Wang C. Fe‐Catalyzed Amidation of Allylic Alcohols by Borrowing Hydrogen Catalysis. Chemistry 2022; 28:e202201829. [DOI: 10.1002/chem.202201829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Xiaoyun Wu
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University 710062 Xi'an P. R. China
| | - Wei Ma
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University 710062 Xi'an P. R. China
- School of Basic Medical Science Ningxia Medical University 750004 Yinchuan P. R. China
| | - Weijun Tang
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University 710062 Xi'an P. R. China
| | - Dong Xue
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University 710062 Xi'an P. R. China
| | - Jianliang Xiao
- Department of Chemistry University of Liverpool L69 7ZD Liverpool UK
| | - Chao Wang
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University 710062 Xi'an P. R. China
| |
Collapse
|
4
|
Dai KL, Chen QL, Xie WP, Lu K, Yan ZB, Peng M, Li CK, Tu Y, Ding TM. Facile Benzylic Alkylation of Arenes with Alcohols by Catalysis with Spirocyclic NHC Ir(III) Pincer Complex. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202206446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Kun-Long Dai
- Shanghai Jiao Tong University School of Chemistry and Chemical Engineering CHINA
| | - Qi-Long Chen
- Lanzhou University School of Chemistry and Chemical Engineering CHINA
| | - Wen-Ping Xie
- Shanghai Jiao Tong University School of Chemistry and Chemical Engineering CHINA
| | - Ka Lu
- Lanzhou University School of Chemistry and Chemical Engineering CHINA
| | - Zhi-Bo Yan
- Lanzhou University School of Chemistry and Chemical Engineering CHINA
| | - Meng Peng
- Lanzhou University School of Chemistry and Chemical Engineering CHINA
| | - Chang-Kun Li
- Shanghai Jiao Tong University School of Chemistry and Chemical Engineering CHINA
| | - Yongqiang Tu
- Lanzhou University Chemistry 222 Tianshui Road South 730000 Lanzhou CHINA
| | - Tong-Mei Ding
- Shanghai Jiao Tong University School of Chemistry and Chemical Engineering CHINA
| |
Collapse
|
5
|
Bains AK, Biswas A, Kundu A, Adhikari D. Nickel‐Catalysis Enabling α‐Alkylation of Ketones by Secondary Alcohols. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Amreen K Bains
- Department of Chemical Sciences Indian Institute of Science Education and Research (IISER) – Mohali SAS Nagar Punjab-140306 India
| | - Ayanangshu Biswas
- Department of Chemical Sciences Indian Institute of Science Education and Research (IISER) – Mohali SAS Nagar Punjab-140306 India
| | - Abhishek Kundu
- Department of Chemical Sciences Indian Institute of Science Education and Research (IISER) – Mohali SAS Nagar Punjab-140306 India
| | - Debashis Adhikari
- Department of Chemical Sciences Indian Institute of Science Education and Research (IISER) – Mohali SAS Nagar Punjab-140306 India
| |
Collapse
|
6
|
Liu X, Sotiropoulos J, Taillefer M. A New Route to
E
‐Stilbenes through the Transition‐Metal‐Free KO
t
Bu/DMF‐Promoted Direct Coupling of Alcohols with Phenyl Acetonitriles. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Xiaoping Liu
- ICGM Université de Montpellier, <orgDiv/CNRS, ENSCM 34296 Montpellier France
| | | | - Marc Taillefer
- ICGM Université de Montpellier, <orgDiv/CNRS, ENSCM 34296 Montpellier France
| |
Collapse
|
7
|
Yang DY, Wang H, Chang CR. Recent Advances for Alkylation of Ketones and Secondary Alcohols using Alcohols in Homogeneous Catalysis. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
8
|
Sharma R, Mondal A, Samanta A, Biswas N, Das B, Srimani D. Well‐Defined Ni−SNS Complex Catalysed Borrowing Hydrogenative α‐Alkylation of Ketones and Dehydrogenative Synthesis of Quinolines. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Rahul Sharma
- Department of Chemistry Indian Institute of Technology-Guwahati Kamrup Assam 781039 India
| | - Avijit Mondal
- Department of Chemistry Indian Institute of Technology-Guwahati Kamrup Assam 781039 India
| | - Arup Samanta
- Department of Chemistry Indian Institute of Technology-Guwahati Kamrup Assam 781039 India
| | - Nandita Biswas
- Department of Chemistry Indian Institute of Technology-Guwahati Kamrup Assam 781039 India
| | - Babulal Das
- Department of Chemistry Indian Institute of Technology-Guwahati Kamrup Assam 781039 India
| | - Dipankar Srimani
- Department of Chemistry Indian Institute of Technology-Guwahati Kamrup Assam 781039 India
| |
Collapse
|
9
|
Liu J, Li W, Li Y, Liu Y, Ke Z. Selective C-alkylation Between Alcohols Catalyzed by N-Heterocyclic Carbene Molybdenum. Chem Asian J 2021; 16:3124-3128. [PMID: 34529352 DOI: 10.1002/asia.202100959] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Indexed: 01/26/2023]
Abstract
The first implementation of a molybdenum complex with an easily accessible bis-N-heterocyclic carbene ligand to catalyze β-alkylation of secondary alcohols via borrowing-hydrogen (BH) strategy using alcohols as alkylating agents is reported. Remarkably high activity, excellent selectivity, and broad substrate scope compatibility with advantages of catalyst usage low to 0.5 mol%, a catalytic amount of NaOH as the base, and H2 O as the by-product are demonstrated in this green and step-economical protocol. Mechanistic studies indicate a plausible outer-sphere mechanism in which the alcohol dehydrogenation is the rate-determining step.
Collapse
Affiliation(s)
- Jiahao Liu
- School of Materials Science and Engineering, PCFM Lab, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Weikang Li
- School of Materials Science and Engineering, PCFM Lab, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Yinwu Li
- School of Materials Science and Engineering, PCFM Lab, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Yan Liu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| | - Zhuofeng Ke
- School of Materials Science and Engineering, PCFM Lab, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| |
Collapse
|
10
|
Sarki N, Goyal V, Natte K, Jagadeesh RV. Base Metal‐Catalyzed C‐Methylation Reactions Using Methanol. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100762] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Naina Sarki
- Chemical and Material Science Division CSIR – Indian Institute of Petroleum Haridwar road, Mohkampur Dehradun 248005 India
| | - Vishakha Goyal
- Chemical and Material Science Division CSIR – Indian Institute of Petroleum Haridwar road, Mohkampur Dehradun 248005 India
| | - Kishore Natte
- Chemical and Material Science Division CSIR – Indian Institute of Petroleum Haridwar road, Mohkampur Dehradun 248005 India
| | | |
Collapse
|
11
|
Subaramanian M, Sivakumar G, Balaraman E. First-Row Transition-Metal Catalyzed Acceptorless Dehydrogenation and Related Reactions: A Personal Account. CHEM REC 2021; 21:3839-3871. [PMID: 34415674 DOI: 10.1002/tcr.202100165] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 07/17/2021] [Accepted: 08/04/2021] [Indexed: 12/17/2022]
Abstract
The development of sustainable catalytic protocols that circumvent the use of expensive and precious metal catalysts and avoid toxic reagents plays a crucial role in organic synthesis. Indeed, the direct employment of simple and abundantly available feedstock chemicals as the starting materials broadens their synthetic application in contemporary research. In particular, the transition metal-catalyzed diversification of alcohols with various nucleophilic partners to construct a wide range of building blocks is a powerful and highly desirable methodology. Moreover, the replacement of precious metal catalysts by non-precious and less toxic metals for selective transformations is one of the main goals and has been paid significant attention to in modern chemistry. In view of this, the first-row transition metal catalysts find extensive applications in various synthetic transformations such as catalytic hydrogenation, dehydrogenation, and related reactions. Herein, we have disclosed our recent developments on the base-metal catalysis such as Mn, Fe, Co, and Ni for the acceptorless dehydrogenation reactions and its application in the C-C and C-N bond formation via hydrogen auto-transfer (HA) and acceptorless dehydrogenation coupling (ADC) reactions. These HA/ADC protocols employ alcohol as alkylating agents and eliminate water and/or hydrogen gas as by-products, representing highly atom-efficient and environmentally benign reactions. Furthermore, diverse simple to complex organic molecules synthesis by C-C and C-N bond formation using feedstock alcohols are also overviewed. Overall, this account deals with the contribution and development of efficient and novel homogeneous as well as heterogeneous base-metal catalysts for sustainable chemical synthesis.
Collapse
Affiliation(s)
- Murugan Subaramanian
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati, 517507, India
| | - Ganesan Sivakumar
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati, 517507, India
| | - Ekambaram Balaraman
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati, 517507, India
| |
Collapse
|
12
|
Yang G, Pan J, Ke Y, Liu Y, Zhao Y. Tandem Catalytic Indolization/Enantioconvergent Substitution of Alcohols by Borrowing Hydrogen to Access Tricyclic Indoles. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202106514] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Guoqiang Yang
- Department of Chemistry, National University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
| | - Jiaoting Pan
- Department of Chemistry, National University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
- Joint School of National University of Singapore and Tianjin University International Campus of Tianjin University Binhai New City Fuzhou 350207 China
| | - Ya‐Ming Ke
- Department of Chemistry, National University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
| | - Yongbing Liu
- Department of Chemistry, National University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
| | - Yu Zhao
- Department of Chemistry, National University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
- Joint School of National University of Singapore and Tianjin University International Campus of Tianjin University Binhai New City Fuzhou 350207 China
| |
Collapse
|
13
|
Li Z, Wen Y, Wang N, Han F, Li Y, Zhuang H, Miao C. Ionic Liquids with Multi‐Active Sites Synergistically Catalyzed Metal‐Free Transformation of Alcohols Using Dimethyl Carbonate as an Environmental Solvent. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100564] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Zengmin Li
- College of Chemistry and Material Science Shandong Agricultural University Daizong Road No. 61 Tai'an 271018 China
| | - Yating Wen
- College of Chemistry and Material Science Shandong Agricultural University Daizong Road No. 61 Tai'an 271018 China
| | - Ning Wang
- College of Chemistry and Material Science Shandong Agricultural University Daizong Road No. 61 Tai'an 271018 China
| | - Feng Han
- College of Chemistry and Material Science Shandong Agricultural University Daizong Road No. 61 Tai'an 271018 China
| | - Ying Li
- College of Chemistry and Material Science Shandong Agricultural University Daizong Road No. 61 Tai'an 271018 China
| | - Hongfeng Zhuang
- College of Chemistry and Material Science Shandong Agricultural University Daizong Road No. 61 Tai'an 271018 China
| | - Chengxia Miao
- College of Chemistry and Material Science Shandong Agricultural University Daizong Road No. 61 Tai'an 271018 China
| |
Collapse
|
14
|
Pan HJ, Lin Y, Gao T, Lau KK, Feng W, Yang B, Zhao Y. Catalytic Diastereo- and Enantioconvergent Synthesis of Vicinal Diamines from Diols through Borrowing Hydrogen. Angew Chem Int Ed Engl 2021; 60:18599-18604. [PMID: 34125475 DOI: 10.1002/anie.202101517] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 06/13/2021] [Indexed: 01/23/2023]
Abstract
We present herein an unprecedented diastereoconvergent synthesis of vicinal diamines from diols through an economical, redox-neutral process. Under cooperative ruthenium and Lewis acid catalysis, readily available anilines and 1,2-diols (as a mixture of diastereomers) couple to forge two C-N bonds in an efficient and diastereoselective fashion. By identifying an effective chiral iridium/phosphoric acid co-catalyzed procedure, the first enantioconvergent double amination of racemic 1,2-diols has also been achieved, resulting in a practical access to highly valuable enantioenriched vicinal diamines.
Collapse
Affiliation(s)
- Hui-Jie Pan
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Republic of Singapore
| | - Yamei Lin
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Republic of Singapore.,School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, P. R. China
| | - Taotao Gao
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Republic of Singapore
| | - Kai Kiat Lau
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Republic of Singapore
| | - Wei Feng
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Republic of Singapore
| | - Binmiao Yang
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Republic of Singapore
| | - Yu Zhao
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Republic of Singapore.,Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China
| |
Collapse
|
15
|
Pan H, Lin Y, Gao T, Lau KK, Feng W, Yang B, Zhao Y. Catalytic Diastereo‐ and Enantioconvergent Synthesis of Vicinal Diamines from Diols through Borrowing Hydrogen. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202101517] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Hui‐Jie Pan
- Department of Chemistry National University of Singapore 3 Science Drive 3 Singapore 117543 Republic of Singapore
| | - Yamei Lin
- Department of Chemistry National University of Singapore 3 Science Drive 3 Singapore 117543 Republic of Singapore
- School of Food Science and Pharmaceutical Engineering Nanjing Normal University 1 Wenyuan Road Nanjing 210023 P. R. China
| | - Taotao Gao
- Department of Chemistry National University of Singapore 3 Science Drive 3 Singapore 117543 Republic of Singapore
| | - Kai Kiat Lau
- Department of Chemistry National University of Singapore 3 Science Drive 3 Singapore 117543 Republic of Singapore
| | - Wei Feng
- Department of Chemistry National University of Singapore 3 Science Drive 3 Singapore 117543 Republic of Singapore
| | - Binmiao Yang
- Department of Chemistry National University of Singapore 3 Science Drive 3 Singapore 117543 Republic of Singapore
| | - Yu Zhao
- Department of Chemistry National University of Singapore 3 Science Drive 3 Singapore 117543 Republic of Singapore
- Joint School of National University of Singapore and Tianjin University International Campus of Tianjin University Binhai New City, Fuzhou 350207 China
| |
Collapse
|
16
|
Mondal A, Sharma R, Pal D, Srimani D. Recent Progress in the Synthesis of Heterocycles through Base Metal‐Catalyzed Acceptorless Dehydrogenative and Borrowing Hydrogen Approach. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100517] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Avijit Mondal
- Department of Chemistry Indian Institute of Technology Guwahati, Assam Kamrup (Rural) 781039 India
| | - Rahul Sharma
- Department of Chemistry Indian Institute of Technology Guwahati, Assam Kamrup (Rural) 781039 India
| | - Debjyoti Pal
- Department of Chemistry Indian Institute of Technology Guwahati, Assam Kamrup (Rural) 781039 India
| | - Dipankar Srimani
- Department of Chemistry Indian Institute of Technology Guwahati, Assam Kamrup (Rural) 781039 India
| |
Collapse
|
17
|
Yang G, Pan J, Ke YM, Liu Y, Zhao Y. Tandem Catalytic Indolization/Enantioconvergent Substitution of Alcohols by Borrowing Hydrogen to Access Tricyclic Indoles. Angew Chem Int Ed Engl 2021; 60:20689-20694. [PMID: 34236747 DOI: 10.1002/anie.202106514] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/01/2021] [Indexed: 12/24/2022]
Abstract
An efficient tandem catalysis method is achieved for the direct conversion of alcohol-containing alkynyl anilines to valuable chiral 2,3-fused tricyclic indoles. This method relies on a tandem indolization followed by enantioconvergent substitution of alcohols via borrowing hydrogen to construct two rings in one step, enabled by relay and cooperative catalysis of a chiral iridium complex with a chiral phosphoric acid. Highly diastereoselective transformations of the tricyclic indole products also provide efficient access to a diverse array of complex polycyclic indoline compounds.
Collapse
Affiliation(s)
- Guoqiang Yang
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Jiaoting Pan
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore.,Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China
| | - Ya-Ming Ke
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Yongbing Liu
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Yu Zhao
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore.,Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China
| |
Collapse
|
18
|
Bettoni L, Joly N, Lohier J, Gaillard S, Poater A, Renaud J. Ruthenium‐Catalyzed Three‐Component Alkylation: A Tandem Approach to the Synthesis of Nonsymmetric
N,N‐
Dialkyl Acyl Hydrazides with Alcohols. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100554] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Léo Bettoni
- Normandie Univ. LCMT, ENSICAEN, UNICAEN, CNRS 6 boulevard du Maréchal Juin 14000 Caen France
| | - Nicolas Joly
- Normandie Univ. LCMT, ENSICAEN, UNICAEN, CNRS 6 boulevard du Maréchal Juin 14000 Caen France
- Departament de Química, Institut de Química Computacional i Catàlisi (IQCC) University of Girona c/ Mª Aurèlia Capmany 69 17003 Girona Catalonia Spain
| | - Jean‐François Lohier
- Normandie Univ. LCMT, ENSICAEN, UNICAEN, CNRS 6 boulevard du Maréchal Juin 14000 Caen France
| | - Sylvain Gaillard
- Normandie Univ. LCMT, ENSICAEN, UNICAEN, CNRS 6 boulevard du Maréchal Juin 14000 Caen France
| | - Albert Poater
- Departament de Química, Institut de Química Computacional i Catàlisi (IQCC) University of Girona c/ Mª Aurèlia Capmany 69 17003 Girona Catalonia Spain
| | - Jean‐Luc Renaud
- Normandie Univ. LCMT, ENSICAEN, UNICAEN, CNRS 6 boulevard du Maréchal Juin 14000 Caen France
| |
Collapse
|
19
|
Ghosh P, Ganguly B, Das S. NaI/KI/NH 4I and TBHP as powerful oxidation systems: use in the formation of various chemical bonds. Org Biomol Chem 2021; 19:2146-2167. [PMID: 33629084 DOI: 10.1039/d0ob02169e] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
In modern organic synthesis, the execution of reactions in the absence of expensive transition metals has received significant attention from the view-point of green chemistry and sustainable development. As a consequence, the combination of MI-TBHP as an oxidation system (M = Na, K, NH4) has opened a new avenue with significant impact for the succinct synthesis of complex heterocycle molecules via the construction of various chemical bonds [C-X (X = C, N, S, O), N-X (X = N, P) and S-N]. This comprehensive review article delineates the progress of recent developments in this emerging area, with an in-depth discussion on the substrate scope, limitations and proper mechanistic underpinnings. We hope this review will highlight the great potential of this MI-TBHP as a powerful oxidation system and inspire researchers to conduct further endeavors in this domain.
Collapse
Affiliation(s)
- Prasanjit Ghosh
- Department of Chemistry, University of North Bengal, Darjeeling - 734013, India.
| | - Bhaskar Ganguly
- Department of Chemistry, University of North Bengal, Darjeeling - 734013, India.
| | - Sajal Das
- Department of Chemistry, University of North Bengal, Darjeeling - 734013, India.
| |
Collapse
|
20
|
Liu X, Sotiropoulos JM, Taillefer M. An alternative mode to activate alcohols: application to the synthesis of N-heteroarene derivatives. Org Chem Front 2021. [DOI: 10.1039/d1qo00930c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Activation of primary alcohols in the presence of KOtBu/DMF allowed the synthesis of N-heteroarenes via the alkylation of the C(sp3)–H bond of methyl azaarenes. A mechanism involving the formation of an alkyl formate intermediate is proposed.
Collapse
Affiliation(s)
- Xiaoping Liu
- ICGM, Université de Montpellier, CNRS, ENSCM, 34296 Montpellier, France
| | | | - Marc Taillefer
- ICGM, Université de Montpellier, CNRS, ENSCM, 34296 Montpellier, France
| |
Collapse
|
21
|
Arun V, Roy L, De Sarkar S. Alcohols as Fluoroalkyl Synthons: Ni-catalyzed Dehydrogenative Approach to Access Polyfluoroalkyl Bis-indoles. Chemistry 2020; 26:16649-16654. [PMID: 32914904 DOI: 10.1002/chem.202003912] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Indexed: 01/04/2023]
Abstract
An acceptorless dehydrogenative strategy for the synthesis of polyfluoroalkylated bis-indoles is described by employing an earth-abundant nickel-based catalytic system under air. The notable feature of the present transformation is the use of bench stable and easily affordable polyfluorinated alcohols without any pre-functionalization for the introduction of precious polyfluoroalkyl groups. The developed straightforward protocol accomplished biologically relevant fluoroalkyl bis-indoles in a sustainable fashion. Extensive DFT study predicts the unique role of indole molecules which stabilizes the transition states during the dehydrogenation process of polyfluorinated alcohols, presumably through non-covalent π⋅⋅⋅π and H-bonding interactions.
Collapse
Affiliation(s)
- V Arun
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, West Bengal, India
| | - Lisa Roy
- Institute of Chemical Technology Mumbai, IOC Odisha Campus Bhubaneswar, IIT Kharagpur Extension Centre, Bhubaneswar, 751013, India
| | - Suman De Sarkar
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, West Bengal, India
| |
Collapse
|
22
|
Xu R, Wang K, Liu H, Tang W, Sun H, Xue D, Xiao J, Wang C. Anti‐Markovnikov Hydroamination of Racemic Allylic Alcohols to Access Chiral γ‐Amino Alcohols. Angew Chem Int Ed Engl 2020; 59:21959-21964. [DOI: 10.1002/anie.202009754] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Indexed: 12/27/2022]
Affiliation(s)
- Ruirui Xu
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710062 China
| | - Kun Wang
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710062 China
| | - Haoying Liu
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710062 China
| | - Weijun Tang
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710062 China
| | - Huaming Sun
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710062 China
| | - Dong Xue
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710062 China
| | - Jianliang Xiao
- Department of Chemistry University of Liverpool Liverpool L69 7ZD UK
| | - Chao Wang
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710062 China
| |
Collapse
|
23
|
Xu R, Wang K, Liu H, Tang W, Sun H, Xue D, Xiao J, Wang C. Anti‐Markovnikov Hydroamination of Racemic Allylic Alcohols to Access Chiral γ‐Amino Alcohols. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202009754] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Ruirui Xu
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710062 China
| | - Kun Wang
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710062 China
| | - Haoying Liu
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710062 China
| | - Weijun Tang
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710062 China
| | - Huaming Sun
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710062 China
| | - Dong Xue
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710062 China
| | - Jianliang Xiao
- Department of Chemistry University of Liverpool Liverpool L69 7ZD UK
| | - Chao Wang
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710062 China
| |
Collapse
|
24
|
Li M, Wu W, Jiang H. Recent Advances in Silver‐Catalyzed Transformations of Electronically Unbiased Alkenes and Alkynes. ChemCatChem 2020. [DOI: 10.1002/cctc.202000743] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Meng Li
- State Key Laboratory of Luminescent Materials and Devices South China University of Technology Guangzhou 510640 P. R. China
| | - Wanqing Wu
- State Key Laboratory of Luminescent Materials and Devices South China University of Technology Guangzhou 510640 P. R. China
- State Key Laboratory of Pulp and Paper Engineering South China University of Technology Guangzhou 510640 P. R. China
| | - Huanfeng Jiang
- State Key Laboratory of Pulp and Paper Engineering South China University of Technology Guangzhou 510640 P. R. China
| |
Collapse
|
25
|
Su C, Zeng M, Zhang C, Cui DM. Ruthenium Catalyzed Divergent Alkylation and Olefination of Methyl 1,3,5-Triazines with Alcohols. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000781] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Chengwu Su
- College of Pharmaceutical Science; Zhejiang University of Technology; 310014 Hangzhou China
| | - Ming Zeng
- College of Pharmaceutical Science; Zhejiang University of Technology; 310014 Hangzhou China
| | - Chen Zhang
- College of Pharmaceutical Science; Zhejiang University of Technology; 310014 Hangzhou China
| | - Dong-Mei Cui
- College of Pharmaceutical Science; Zhejiang University of Technology; 310014 Hangzhou China
| |
Collapse
|
26
|
Jayaprakash H, Guo L, Wang S, Bruneau C, Fischmeister C. Acceptorless and Base-Free Dehydrogenation of Alcohols Mediated by a Dipyridylamine-Iridium(III) Catalyst. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000584] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Harikrishnan Jayaprakash
- CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226; Univ Rennes; 35000 Rennes France
| | - Liwei Guo
- CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226; Univ Rennes; 35000 Rennes France
| | - Shengdong Wang
- CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226; Univ Rennes; 35000 Rennes France
| | - Christian Bruneau
- CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226; Univ Rennes; 35000 Rennes France
| | - Cédric Fischmeister
- CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226; Univ Rennes; 35000 Rennes France
| |
Collapse
|
27
|
Chakraborty P, Garg N, Manoury E, Poli R, Sundararaju B. C-Alkylation of Various Carbonucleophiles with Secondary Alcohols under CoIII-Catalysis. ACS Catal 2020. [DOI: 10.1021/acscatal.0c01728] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Priyanka Chakraborty
- Department of Chemistry, Indian Institute of Technology Kanpur, 208016 Kanpur, Uttar Pradesh, India
| | - Nidhi Garg
- Department of Chemistry, Indian Institute of Technology Kanpur, 208016 Kanpur, Uttar Pradesh, India
| | - Eric Manoury
- CNRS, LCC (Laboratoire de Chimie de Coordination), Université de Toulouse, UPS, INPT, 205 Route de Narbonne, F-31077 Toulouse Cedex 4, France
| | - Rinaldo Poli
- CNRS, LCC (Laboratoire de Chimie de Coordination), Université de Toulouse, UPS, INPT, 205 Route de Narbonne, F-31077 Toulouse Cedex 4, France
| | - Basker Sundararaju
- Department of Chemistry, Indian Institute of Technology Kanpur, 208016 Kanpur, Uttar Pradesh, India
| |
Collapse
|
28
|
Ng TW, Liao G, Lau KK, Pan H, Zhao Y. Room‐Temperature Guerbet Reaction with Unprecedented Catalytic Efficiency and Enantioselectivity. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202004758] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Teng Wei Ng
- Department of Chemistry National University of Singapore 3 Science Drive 3 Singapore 117543 Republic of Singapore
| | - Gang Liao
- Department of Chemistry National University of Singapore 3 Science Drive 3 Singapore 117543 Republic of Singapore
| | - Kai Kiat Lau
- Department of Chemistry National University of Singapore 3 Science Drive 3 Singapore 117543 Republic of Singapore
| | - Hui‐Jie Pan
- Department of Chemistry National University of Singapore 3 Science Drive 3 Singapore 117543 Republic of Singapore
| | - Yu Zhao
- Department of Chemistry National University of Singapore 3 Science Drive 3 Singapore 117543 Republic of Singapore
- Joint School of National University of Singapore and Tianjin University International Campus of Tianjin University Binhai New City Fuzhou 350207 China
| |
Collapse
|
29
|
Ng TW, Liao G, Lau KK, Pan H, Zhao Y. Room‐Temperature Guerbet Reaction with Unprecedented Catalytic Efficiency and Enantioselectivity. Angew Chem Int Ed Engl 2020; 59:11384-11389. [DOI: 10.1002/anie.202004758] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 04/21/2020] [Indexed: 12/22/2022]
Affiliation(s)
- Teng Wei Ng
- Department of Chemistry National University of Singapore 3 Science Drive 3 Singapore 117543 Republic of Singapore
| | - Gang Liao
- Department of Chemistry National University of Singapore 3 Science Drive 3 Singapore 117543 Republic of Singapore
| | - Kai Kiat Lau
- Department of Chemistry National University of Singapore 3 Science Drive 3 Singapore 117543 Republic of Singapore
| | - Hui‐Jie Pan
- Department of Chemistry National University of Singapore 3 Science Drive 3 Singapore 117543 Republic of Singapore
| | - Yu Zhao
- Department of Chemistry National University of Singapore 3 Science Drive 3 Singapore 117543 Republic of Singapore
- Joint School of National University of Singapore and Tianjin University International Campus of Tianjin University Binhai New City Fuzhou 350207 China
| |
Collapse
|
30
|
Lan XB, Ye Z, Liu J, Huang M, Shao Y, Cai X, Liu Y, Ke Z. Sustainable and Selective Alkylation of Deactivated Secondary Alcohols to Ketones by Non-bifunctional Pincer N-heterocyclic Carbene Manganese. CHEMSUSCHEM 2020; 13:2557-2563. [PMID: 32233008 DOI: 10.1002/cssc.202000576] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Indexed: 06/10/2023]
Abstract
A sustainable and green route to access diverse functionalized ketones via dehydrogenative-dehydrative cross-coupling of primary and secondary alcohols is demonstrated. This borrowing hydrogen approach employing a pincer N-heterocyclic carbene Mn complex displays high activity and selectivity. A variety of primary and secondary alcohols are well tolerant and result in satisfactory isolated yields. Mechanistic studies suggest that this reaction proceeds via a direct outer-sphere mechanism and the dehydrogenation of the secondary alcohol substrates plays a vital role in the rate-limiting step.
Collapse
Affiliation(s)
- Xiao-Bing Lan
- School of Materials Science & Engineering, PCFM Lab, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Zongren Ye
- School of Materials Science & Engineering, PCFM Lab, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Jiahao Liu
- School of Materials Science & Engineering, PCFM Lab, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Ming Huang
- School of Materials Science & Engineering, PCFM Lab, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Youxiang Shao
- School of Materials Science & Engineering, PCFM Lab, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Xiang Cai
- Department of Light Chemical Engineering, Guangdong Polytechnic, Foshan, 528041, P. R. China
| | - Yan Liu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| | - Zhuofeng Ke
- School of Materials Science & Engineering, PCFM Lab, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| |
Collapse
|
31
|
Wang K, Zhang L, Tang W, Sun H, Xue D, Lei M, Xiao J, Wang C. Asymmetric Guerbet Reaction to Access Chiral Alcohols. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202003104] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Kun Wang
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710062 China
| | - Lin Zhang
- State Key Laboratory of Chemical Resource Engineering Institute of Computational Chemistry College of Chemistry Beijing University of Chemical Technology Beijing 100029 China
| | - Weijun Tang
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710062 China
| | - Huaming Sun
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710062 China
| | - Dong Xue
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710062 China
| | - Ming Lei
- State Key Laboratory of Chemical Resource Engineering Institute of Computational Chemistry College of Chemistry Beijing University of Chemical Technology Beijing 100029 China
| | - Jianliang Xiao
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710062 China
- Department of Chemistry University of Liverpool Liverpool L69 7ZD UK
| | - Chao Wang
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710062 China
| |
Collapse
|
32
|
Wang K, Zhang L, Tang W, Sun H, Xue D, Lei M, Xiao J, Wang C. Asymmetric Guerbet Reaction to Access Chiral Alcohols. Angew Chem Int Ed Engl 2020; 59:11408-11415. [DOI: 10.1002/anie.202003104] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Indexed: 12/11/2022]
Affiliation(s)
- Kun Wang
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710062 China
| | - Lin Zhang
- State Key Laboratory of Chemical Resource Engineering Institute of Computational Chemistry College of Chemistry Beijing University of Chemical Technology Beijing 100029 China
| | - Weijun Tang
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710062 China
| | - Huaming Sun
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710062 China
| | - Dong Xue
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710062 China
| | - Ming Lei
- State Key Laboratory of Chemical Resource Engineering Institute of Computational Chemistry College of Chemistry Beijing University of Chemical Technology Beijing 100029 China
| | - Jianliang Xiao
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710062 China
- Department of Chemistry University of Liverpool Liverpool L69 7ZD UK
| | - Chao Wang
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710062 China
| |
Collapse
|
33
|
Piehl P, Amuso R, Alberico E, Junge H, Gabriele B, Neumann H, Beller M. Cyclometalated Ruthenium Pincer Complexes as Catalysts for the α-Alkylation of Ketones with Alcohols. Chemistry 2020; 26:6050-6055. [PMID: 31985105 PMCID: PMC7317879 DOI: 10.1002/chem.202000396] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Indexed: 11/29/2022]
Abstract
Ruthenium PNP pincer complexes bearing supplementary cyclometalated C,N‐bound ligands have been prepared and fully characterized for the first time. By replacing CO and H− as ancillary ligands in such complexes, additional electronic and steric modifications of this topical class of catalysts are possible. The advantages of the new catalysts are demonstrated in the general α‐alkylation of ketones with alcohols following a hydrogen autotransfer protocol. Herein, various aliphatic and benzylic alcohols were applied as green alkylating agents for ketones bearing aromatic, heteroaromatic or aliphatic substituents as well as cyclic ones. Mechanistic investigations revealed that during catalysis, Ru carboxylate complexes are predominantly formed whereas neither the PNP nor the CN ligand are released from the catalyst in significant amounts.
Collapse
Affiliation(s)
- Patrick Piehl
- Leibniz-Institut für Katalyse e.V., Albert-Einstein-Strasse 29a, 18059, Rostock, Germany
| | - Roberta Amuso
- Leibniz-Institut für Katalyse e.V., Albert-Einstein-Strasse 29a, 18059, Rostock, Germany.,Laboratory of Industrial and Synthetic Organic Chemistry (LISOC), Department of Chemistry and Chemical Technologies, University of Calabria, Via Pietro Bucci 12/C, 87036, Arcavacata di, Rende (CS, Italy
| | - Elisabetta Alberico
- Leibniz-Institut für Katalyse e.V., Albert-Einstein-Strasse 29a, 18059, Rostock, Germany.,Istituto di Chimica Biomolecolare, CNR, tr. La Crucca 3, 07100, Sassari, Italy
| | - Henrik Junge
- Leibniz-Institut für Katalyse e.V., Albert-Einstein-Strasse 29a, 18059, Rostock, Germany
| | - Bartolo Gabriele
- Laboratory of Industrial and Synthetic Organic Chemistry (LISOC), Department of Chemistry and Chemical Technologies, University of Calabria, Via Pietro Bucci 12/C, 87036, Arcavacata di, Rende (CS, Italy
| | - Helfried Neumann
- Leibniz-Institut für Katalyse e.V., Albert-Einstein-Strasse 29a, 18059, Rostock, Germany
| | - Matthias Beller
- Leibniz-Institut für Katalyse e.V., Albert-Einstein-Strasse 29a, 18059, Rostock, Germany
| |
Collapse
|
34
|
Yao W, Ge C, Zhang Y, Xia XF, Wang L, Wang D. Retracted: Synthesis of 2-Arylisoindoline Derivatives Catalyzed by Reusable 1,2,4-Triazole Iridium on Mesoporous Silica through a Cascade Borrowing Hydrogen Strategy. Chemistry 2019; 25:16099-16105. [PMID: 31588599 DOI: 10.1002/chem.201904095] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Indexed: 01/24/2023]
Abstract
Covalent attachment of a 1,2,4-triazole iridium complex to mesoporous MCM-41 generated a heterogeneous catalyst that was found to be effective in the synthesis of 2-aryl isoindolines, quinolines, cyclic amines, and symmetrical secondary amines through a cascade borrowing hydrogen strategy. Interestingly, the supported heterogeneous iridium catalyst prepared from the 1,2,4-triazole iridium complex and mesoporous MCM-41 exhibited high catalytic activity in the preparation of 2-aryl isoindoline derivatives and symmetrical secondary amines. The catalyst system is highly recyclable for at least five times. Besides the important effect of the triazole, iridium sites grafted on siliceous supports can act as multifunctional catalytic centers and thus greatly enhance the catalytic activity of the catalysts. Furthermore, mechanistic experiments revealed that the reaction is initiated by an initial alcohol dehydrogenation and promoted by an iridium hydride intermediate. Importantly, the direct detection of a diagnostic iridium hydride signal confirmed that the synthesis of 2-aryl isoindolines occurs by a borrowing hydrogen process. This work provides an efficient example of isoindolines synthesis through a borrowing hydrogen strategy.
Collapse
Affiliation(s)
- Wei Yao
- School of Chemical and Material Engineering, Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Jiangnan University, Wuxi, 214122, P. R. China
| | - Chenyang Ge
- School of Chemical and Material Engineering, Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Jiangnan University, Wuxi, 214122, P. R. China
- Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, College of Materials and Chemical Engineering, China Three Gorges University, Yichang, Hubei, 443002, P. R. China
| | - Yilin Zhang
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West, Virginia, 26506, USA
| | - Xiao-Feng Xia
- School of Chemical and Material Engineering, Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Jiangnan University, Wuxi, 214122, P. R. China
| | - Long Wang
- Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, College of Materials and Chemical Engineering, China Three Gorges University, Yichang, Hubei, 443002, P. R. China
| | - Dawei Wang
- School of Chemical and Material Engineering, Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Jiangnan University, Wuxi, 214122, P. R. China
| |
Collapse
|
35
|
Huy PH. Lewis Base Catalysis Promoted Nucleophilic Substitutions – Recent Advances and Future Directions. European J Org Chem 2019. [DOI: 10.1002/ejoc.201901495] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Peter H. Huy
- Institute for Organic Chemistry Saarland University P. O. Box 151150 66041 Saarbruecken Germany
| |
Collapse
|
36
|
Yao W, Duan Z, Zhang Y, Sang X, Xia X, Wang D. Iridium Supported on Phosphorus‐Doped Porous Organic Polymers: Active and Recyclable Catalyst for Acceptorless Dehydrogenation and Borrowing Hydrogen Reaction. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201900929] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Wei Yao
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material EngineeringJiangnan University Wuxi 214122 People's Republic of China
| | - Zheng‐Chao Duan
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material EngineeringJiangnan University Wuxi 214122 People's Republic of China
- School of Chemical and Environmental EngineeringHubei Minzu University Enshi 445000 People's Republic of China
| | - Yilin Zhang
- C. Eugene Bennett Department of ChemistryWest Virginia University Morgantown, West Virginia 26506 USA
| | - Xinxin Sang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material EngineeringJiangnan University Wuxi 214122 People's Republic of China
| | - Xiao‐Feng Xia
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material EngineeringJiangnan University Wuxi 214122 People's Republic of China
| | - Dawei Wang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material EngineeringJiangnan University Wuxi 214122 People's Republic of China
| |
Collapse
|
37
|
Mujahed S, Valentini F, Cohen S, Vaccaro L, Gelman D. Polymer-Anchored Bifunctional Pincer Catalysts for Chemoselective Transfer Hydrogenation and Related Reactions. CHEMSUSCHEM 2019; 12:4693-4699. [PMID: 31368199 DOI: 10.1002/cssc.201901728] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 07/31/2019] [Indexed: 06/10/2023]
Abstract
A series of polymer-supported cooperative PC(sp3 )P pincer catalysts was synthesized and characterized. Their catalytic activity in the acceptorless dehydrogenative coupling of alcohols and the transfer hydrogenation of aldehydes with formic acid as a hydrogen source was investigated. This comparative study, examining homogeneous and polymer-tethered species, proved that carefully designing a link between the support and the catalytic moiety, which takes into consideration the mechanism underlying the target transformation, might lead to superior heterogeneous catalysis.
Collapse
Affiliation(s)
- Shrouq Mujahed
- Institute of Chemistry, Edmond J. Safra Campus, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Federica Valentini
- Dipartimento di Chimica, Biologia e Biotecnologie, Università degli Studi di Perugia, Via Elce di Sotto, 8, 06124, Perugia, Italy
| | - Shirel Cohen
- Institute of Chemistry, Edmond J. Safra Campus, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Luigi Vaccaro
- Dipartimento di Chimica, Biologia e Biotecnologie, Università degli Studi di Perugia, Via Elce di Sotto, 8, 06124, Perugia, Italy
| | - Dmitri Gelman
- Institute of Chemistry, Edmond J. Safra Campus, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
- Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklay St., 6, 117198, Moscow, Russia
| |
Collapse
|
38
|
Gong D, Hu B, Yang W, Chen D. Bidentate Ru(II)‐NC Complexes as Catalysts for
α
‐Alkylation of Unactivated Amides and Esters. ChemCatChem 2019. [DOI: 10.1002/cctc.201901319] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Dawei Gong
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage School of Chemical Engineering & TechnologyHarbin Institute of Technology Harbin 150001 People's Republic of China
| | - Bowen Hu
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage School of Chemical Engineering & TechnologyHarbin Institute of Technology Harbin 150001 People's Republic of China
| | - Weiwei Yang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage School of Chemical Engineering & TechnologyHarbin Institute of Technology Harbin 150001 People's Republic of China
| | - Dafa Chen
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage School of Chemical Engineering & TechnologyHarbin Institute of Technology Harbin 150001 People's Republic of China
| |
Collapse
|
39
|
Chakraborty P, Gangwar MK, Emayavaramban B, Manoury E, Poli R, Sundararaju B. α-Alkylation of Ketones with Secondary Alcohols Catalyzed by Well-Defined Cp*Co III -Complexes. CHEMSUSCHEM 2019; 12:3463-3467. [PMID: 31240858 DOI: 10.1002/cssc.201900990] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 06/10/2019] [Indexed: 05/20/2023]
Abstract
Although α-alkylation of ketones with primary alcohols by transition-metal catalysis is well-known, the same process with secondary alcohols is arduous and complicated by self-condensation. Herein a well-defined, high-valence cobalt(III)-catalyst was applied for successful α-alkylation of ketones with secondary alcohols. A wide-variety of secondary alcohols, which include cyclic, acyclic, symmetrical, and unsymmetrical compounds, was employed as alkylating agents to produce β-alkyl aryl ketones.
Collapse
Affiliation(s)
- Priyanka Chakraborty
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, 208 016, India
| | - Manoj Kumar Gangwar
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, 208 016, India
| | - Balakumar Emayavaramban
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, 208 016, India
| | - Eric Manoury
- Fine CNRS, LCC (Laboratoire de Chimie de Coordination), Université de Toulouse, UPS, INPT, 205 Route de Narbonne, F-31077, Toulouse Cedex 4, France
| | - Rinaldo Poli
- Fine CNRS, LCC (Laboratoire de Chimie de Coordination), Université de Toulouse, UPS, INPT, 205 Route de Narbonne, F-31077, Toulouse Cedex 4, France
| | - Basker Sundararaju
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, 208 016, India
| |
Collapse
|
40
|
Xu G, Yang G, Wang Y, Shao PL, Yau JNN, Liu B, Zhao Y, Sun Y, Xie X, Wang S, Zhang Y, Xia L, Zhao Y. Stereoconvergent, Redox-Neutral Access to Tetrahydroquinoxalines through Relay Epoxide Opening/Amination of Alcohols. Angew Chem Int Ed Engl 2019; 58:14082-14088. [PMID: 31270918 DOI: 10.1002/anie.201906199] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 06/27/2019] [Indexed: 12/19/2022]
Abstract
We present an economical catalytic procedure to convert readily available 1,2-diaminobenzenes and terminal epoxides into valuable 1,2,3,4-tetrahydroquinoxalines in a highly enantioselective fashion. This procedure operates through relay zinc and iridium catalysis, and achieves redox-neutral and stereoconvergent production of valuable chiral heterocycles from racemic starting materials with water as the only side product. The use of commercially available reagents and catalysts and a convenient procedure also make this catalytic method attractive for practical application.
Collapse
Affiliation(s)
- Guangda Xu
- College of Chemistry, Liaoning University, Shenyang, 110036, P. R. China
| | - Guoqiang Yang
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore, Singapore
| | - Yue Wang
- College of Chemistry, Liaoning University, Shenyang, 110036, P. R. China
| | - Pan-Lin Shao
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore, Singapore
| | - Jia Ning Nicolette Yau
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore, Singapore
| | - Bing Liu
- College of Chemistry, Liaoning University, Shenyang, 110036, P. R. China
| | - Yunbo Zhao
- College of Chemistry, Liaoning University, Shenyang, 110036, P. R. China
| | - Ye Sun
- College of Chemistry, Liaoning University, Shenyang, 110036, P. R. China
| | - Xinxin Xie
- College of Chemistry, Liaoning University, Shenyang, 110036, P. R. China
| | - Shuo Wang
- College of Chemistry, Liaoning University, Shenyang, 110036, P. R. China
| | - Yao Zhang
- College of Chemistry, Liaoning University, Shenyang, 110036, P. R. China
| | - Lixin Xia
- College of Chemistry, Liaoning University, Shenyang, 110036, P. R. China
| | - Yu Zhao
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore, Singapore
| |
Collapse
|
41
|
Xu G, Yang G, Wang Y, Shao P, Yau JNN, Liu B, Zhao Y, Sun Y, Xie X, Wang S, Zhang Y, Xia L, Zhao Y. Stereoconvergent, Redox‐Neutral Access to Tetrahydroquinoxalines through Relay Epoxide Opening/Amination of Alcohols. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201906199] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Guangda Xu
- College of Chemistry Liaoning University Shenyang 110036 P. R. China
| | - Guoqiang Yang
- Department of Chemistry National University of Singapore 3 Science Drive 3 117543 Singapore Singapore
| | - Yue Wang
- College of Chemistry Liaoning University Shenyang 110036 P. R. China
| | - Pan‐Lin Shao
- Department of Chemistry National University of Singapore 3 Science Drive 3 117543 Singapore Singapore
| | - Jia Ning Nicolette Yau
- Department of Chemistry National University of Singapore 3 Science Drive 3 117543 Singapore Singapore
| | - Bing Liu
- College of Chemistry Liaoning University Shenyang 110036 P. R. China
| | - Yunbo Zhao
- College of Chemistry Liaoning University Shenyang 110036 P. R. China
| | - Ye Sun
- College of Chemistry Liaoning University Shenyang 110036 P. R. China
| | - Xinxin Xie
- College of Chemistry Liaoning University Shenyang 110036 P. R. China
| | - Shuo Wang
- College of Chemistry Liaoning University Shenyang 110036 P. R. China
| | - Yao Zhang
- College of Chemistry Liaoning University Shenyang 110036 P. R. China
| | - Lixin Xia
- College of Chemistry Liaoning University Shenyang 110036 P. R. China
| | - Yu Zhao
- Department of Chemistry National University of Singapore 3 Science Drive 3 117543 Singapore Singapore
| |
Collapse
|
42
|
Borghs JC, Azofra LM, Biberger T, Linnenberg O, Cavallo L, Rueping M, El-Sepelgy O. Manganese-Catalyzed Multicomponent Synthesis of Pyrroles through Acceptorless Dehydrogenation Hydrogen Autotransfer Catalysis: Experiment and Computation. CHEMSUSCHEM 2019; 12:3083-3088. [PMID: 30589227 DOI: 10.1002/cssc.201802416] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 11/06/2018] [Accepted: 11/07/2018] [Indexed: 06/09/2023]
Abstract
A new base metal catalyzed sustainable multicomponent synthesis of pyrroles from readily available substrates is reported. The developed protocol utilizes an air- and moisture-stable catalyst system and enables the replacement of themutagenic α-haloketones with readily abundant 1,2-diols. Moreover, the presented method is catalytic in base and the sole byproducts of this transformation are water and hydrogen gas. Experimental and computational mechanistic studies indicate that the reaction takes place through a combined acceptorless dehydrogenation hydrogen autotransfer methodology.
Collapse
Affiliation(s)
- Jannik C Borghs
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| | - Luis Miguel Azofra
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Tobias Biberger
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| | - Oliver Linnenberg
- Institute of Inorganic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| | - Luigi Cavallo
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Magnus Rueping
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Osama El-Sepelgy
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| |
Collapse
|
43
|
El-Sepelgy O, Matador E, Brzozowska A, Rueping M. C-Alkylation of Secondary Alcohols by Primary Alcohols through Manganese-Catalyzed Double Hydrogen Autotransfer. CHEMSUSCHEM 2019; 12:3099-3102. [PMID: 30239145 DOI: 10.1002/cssc.201801660] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Revised: 08/14/2018] [Indexed: 06/08/2023]
Abstract
A new Mn-catalyzed alkylation of secondary alcohols with non-activated alcohols is presented. The use of a stable and well-defined manganese pincer complex, stabilized by a PNN ligand, together with a catalytic amount of base enabled the conversion of renewable alcohol feedstocks to a broad range of higher-value alcohols in good yields with water as the sole byproduct. The strategy eliminates the need for exogenous and detrimental alkyl halides as well as the use of noble metal catalysts, making the C-alkylation through double hydrogen autotransfer a highly sustainable and environmentally benign process. Mechanistic investigations support a hydrogen autotransfer mechanism in which a non-innocent ligand plays a crucial role.
Collapse
Affiliation(s)
- Osama El-Sepelgy
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| | - Esteban Matador
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| | - Aleksandra Brzozowska
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| | - Magnus Rueping
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| |
Collapse
|
44
|
Dambatta MB, Polidano K, Northey AD, Williams JMJ, Morrill LC. Iron-Catalyzed Borrowing Hydrogen C-Alkylation of Oxindoles with Alcohols. CHEMSUSCHEM 2019; 12:2345-2349. [PMID: 30958919 PMCID: PMC6619250 DOI: 10.1002/cssc.201900799] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 04/08/2019] [Indexed: 05/25/2023]
Abstract
A general and efficient iron-catalyzed C-alkylation of oxindoles has been developed. This borrowing hydrogen approach employing a (cyclopentadienone)iron carbonyl complex (2 mol %) exhibited a broad reaction scope, allowing benzylic and simple primary and secondary aliphatic alcohols to be employed as alkylating agents. A variety of oxindoles underwent selective mono-C3-alkylation in good-to-excellent isolated yields (28 examples, 50-92 % yield, 79 % average yield).
Collapse
Affiliation(s)
- Mubarak B Dambatta
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, UK
| | - Kurt Polidano
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, UK
| | - Alexander D Northey
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, UK
| | | | - Louis C Morrill
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, UK
| |
Collapse
|
45
|
Charvieux A, Duguet N, Métay E. α-Methylation of Ketones with Methanol Catalyzed by Ni/SiO2
-Al2
O3. European J Org Chem 2019. [DOI: 10.1002/ejoc.201900602] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Aubin Charvieux
- CNRS, INSA-Lyon, CPE-Lyon, Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, ICBMS, UMR 5246, Equipe CAtalyse, SYnthèse et ENvironnement (CASYEN); Univ Lyon, Université Claude Bernard Lyon1; Campus LyonTech La Doua, Bâtiment Lederer, 1 rue Victor Grignard 69100 Villeurbanne France
| | - Nicolas Duguet
- CNRS, INSA-Lyon, CPE-Lyon, Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, ICBMS, UMR 5246, Equipe CAtalyse, SYnthèse et ENvironnement (CASYEN); Univ Lyon, Université Claude Bernard Lyon1; Campus LyonTech La Doua, Bâtiment Lederer, 1 rue Victor Grignard 69100 Villeurbanne France
| | - Estelle Métay
- CNRS, INSA-Lyon, CPE-Lyon, Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, ICBMS, UMR 5246, Equipe CAtalyse, SYnthèse et ENvironnement (CASYEN); Univ Lyon, Université Claude Bernard Lyon1; Campus LyonTech La Doua, Bâtiment Lederer, 1 rue Victor Grignard 69100 Villeurbanne France
| |
Collapse
|
46
|
Guo B, Yu T, Li H, Zhang S, Braunstein P, Young DJ, Li H, Lang J. Phosphine Ligand‐Free Ruthenium Complexes as Efficient Catalysts for the Synthesis of Quinolines and Pyridines by Acceptorless Dehydrogenative Coupling Reactions. ChemCatChem 2019. [DOI: 10.1002/cctc.201900435] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Bin Guo
- College of Chemistry, Chemical Engineering and Materials ScienceSoochow University Suzhou 215123 P.R. China
| | - Tian‐Qi Yu
- College of Chemistry, Chemical Engineering and Materials ScienceSoochow University Suzhou 215123 P.R. China
| | - Hong‐Xi Li
- College of Chemistry, Chemical Engineering and Materials ScienceSoochow University Suzhou 215123 P.R. China
| | - Shi‐Qi Zhang
- College of Chemistry, Chemical Engineering and Materials ScienceSoochow University Suzhou 215123 P.R. China
| | - Pierre Braunstein
- Institut de Chimie (UMR 7177 CNRS)Université de Strasbourg Strasbourg 67081 France
| | - David J. Young
- College of Engineering, Information Technology and EnvironmentCharles Darwin University Northern Territory 0909 Australia
| | - Hai‐Yan Li
- College of Chemistry, Chemical Engineering and Materials ScienceSoochow University Suzhou 215123 P.R. China
| | - Jian‐Ping Lang
- College of Chemistry, Chemical Engineering and Materials ScienceSoochow University Suzhou 215123 P.R. China
| |
Collapse
|
47
|
Porcheddu A, Chelucci G. Base-Mediated Transition-Metal-Free Dehydrative C-C and C-N Bond-Forming Reactions from Alcohols. CHEM REC 2019; 19:2398-2435. [PMID: 31021533 DOI: 10.1002/tcr.201800170] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 03/31/2019] [Indexed: 02/05/2023]
Abstract
In recent years, there has been an increasing interest in using alcohols as alkylating agents for C-C and C-N bond-forming processes employing mainly TM-catalysts. Although BH-catalysis looks like a green atom economy process since water is the only by-product, it often suffers from one or more drawbacks, such as the use of expensive noble metal complexes, capricious ligands, and toxic organic solvents. Therefore, straightforward, efficient, atom economy and environmentally benign alternative protocols are desirable. This review aims to summarize the current knowledge within the published literature about dehydrative processes developed without TM-catalysts. The most recent contributions to this topic have been reviewed keeping into account the new findings reported in this area. The features, strengths, and limitations of these alcohol-based C-C and C-N bond-forming processes has also been taken into account.
Collapse
Affiliation(s)
- Andrea Porcheddu
- Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Cagliari, SS 554 bivio per Sestu, 09042, Monserrato (CA), Italy
| | - Giorgio Chelucci
- Dipartimento di Agraria, Università degli Studi di Sassari, Viale Italia 39, 07100, Sassari, Italy
| |
Collapse
|
48
|
Kumar A, Janes T, Chakraborty S, Daw P, von Wolff N, Carmieli R, Diskin-Posner Y, Milstein D. C−C Bond Formation of Benzyl Alcohols and Alkynes Using a Catalytic Amount of KOt
Bu: Unusual Regioselectivity through a Radical Mechanism. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201812687] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Amit Kumar
- Department of Organic Chemistry; Weizmann Institute of Science; Rehovot 76100 Israel
| | - Trevor Janes
- Department of Organic Chemistry; Weizmann Institute of Science; Rehovot 76100 Israel
| | - Subrata Chakraborty
- Department of Organic Chemistry; Weizmann Institute of Science; Rehovot 76100 Israel
| | - Prosenjit Daw
- Department of Organic Chemistry; Weizmann Institute of Science; Rehovot 76100 Israel
| | - Niklas von Wolff
- Department of Organic Chemistry; Weizmann Institute of Science; Rehovot 76100 Israel
| | - Raanan Carmieli
- Chemical Research Support; Weizmann Institute of Science; Rehovot 76100 Israel
| | - Yael Diskin-Posner
- Chemical Research Support; Weizmann Institute of Science; Rehovot 76100 Israel
| | - David Milstein
- Department of Organic Chemistry; Weizmann Institute of Science; Rehovot 76100 Israel
| |
Collapse
|
49
|
Kumar A, Janes T, Chakraborty S, Daw P, von Wolff N, Carmieli R, Diskin-Posner Y, Milstein D. C-C Bond Formation of Benzyl Alcohols and Alkynes Using a Catalytic Amount of KO t Bu: Unusual Regioselectivity through a Radical Mechanism. Angew Chem Int Ed Engl 2019; 58:3373-3377. [PMID: 30605258 DOI: 10.1002/anie.201812687] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Indexed: 01/24/2023]
Abstract
We report a C-C bond-forming reaction between benzyl alcohols and alkynes in the presence of a catalytic amount of KOt Bu to form α-alkylated ketones in which the C=O group is located on the side derived from the alcohol. The reaction proceeds under thermal conditions (125 °C) and produces no waste, making the reaction highly atom efficient, environmentally benign, and sustainable. Based on our mechanistic investigations, we propose that the reaction proceeds through radical pathways.
Collapse
Affiliation(s)
- Amit Kumar
- Department of Organic Chemistry, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Trevor Janes
- Department of Organic Chemistry, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Subrata Chakraborty
- Department of Organic Chemistry, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Prosenjit Daw
- Department of Organic Chemistry, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Niklas von Wolff
- Department of Organic Chemistry, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Raanan Carmieli
- Chemical Research Support, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Yael Diskin-Posner
- Chemical Research Support, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - David Milstein
- Department of Organic Chemistry, Weizmann Institute of Science, Rehovot, 76100, Israel
| |
Collapse
|
50
|
Midya SP, Rana J, Pitchaimani J, Nandakumar A, Madhu V, Balaraman E. Ni-Catalyzed α-Alkylation of Unactivated Amides and Esters with Alcohols by Hydrogen Auto-Transfer Strategy. CHEMSUSCHEM 2018; 11:3911-3916. [PMID: 30284756 DOI: 10.1002/cssc.201801443] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 09/19/2018] [Indexed: 05/20/2023]
Abstract
A transition-metal-catalyzed borrowing hydrogen/hydrogen auto-transfer strategy allows the utilization of feedstock alcohols as an alkylating partner, which avoids the formation of stoichiometric salt waste and enables a direct and benign approach for the construction of C-N and C-C bonds. In this study, a nickel-catalyzed α-alkylation of unactivated amides and ester (tert-butyl acetate) is carried out by using primary alcohols under mild conditions. This C-C bond-forming reaction is catalyzed by a new, molecularly defined nickel(II) NNN-pincer complex (0.1-1 mol %) and proceeds through hydrogen auto-transfer, thereby releasing water as the sole byproduct. In addition, N-alkylation of cyclic amides under Ni-catalytic conditions is demonstrated.
Collapse
Affiliation(s)
- Siba P Midya
- Organic Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune-, 411008, India
| | - Jagannath Rana
- Organic Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune-, 411008, India
| | - Jayaraman Pitchaimani
- Department of Chemistry, Karunya Institute of Technology and Sciences, Coimbatore-, 641114, Tamil Nadu, India
| | - Avanashiappan Nandakumar
- Organic Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune-, 411008, India
| | - Vedichi Madhu
- Department of Chemistry, Karunya Institute of Technology and Sciences, Coimbatore-, 641114, Tamil Nadu, India
| | - Ekambaram Balaraman
- Organic Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune-, 411008, India
| |
Collapse
|