A shape-memory and spiral light-emitting device for precise multisite stimulation of nerve bundles.
Nat Commun 2019;
10:2790. [PMID:
31243276 PMCID:
PMC6594927 DOI:
10.1038/s41467-019-10418-3]
[Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/02/2018] [Accepted: 05/11/2019] [Indexed: 11/21/2022] Open
Abstract
We previously demonstrated that for long-term spastic limb paralysis, transferring the seventh cervical nerve (C7) from the nonparalyzed side to the paralyzed side results in increase of 17.7 in Fugl-Meyer score. One strategy for further improvement in voluntary arm movement is selective activation of five target muscles innervated by C7 during recovery process. In this study, we develop an implantable multisite optogenetic stimulation device (MOSD) based on shape-memory polymer. Two-site stimulation of sciatic nerve bundles by MOSD induces precise extension or flexion movements of the ankle joint, while eight-site stimulation of C7 nerve bundles induce selective limb movement. Long-term implant of MOSD to mice with severed and anastomosed C7 nerve is proven to be both safe and effective. Our work opens up the possibility for multisite nerve bundle stimulation to induce highly-selective activations of limb muscles, which could inspire further applications in neurosurgery and neuroscience research.
Optogenetic stimulation of damaged peripheral nerves has advantages over electrical stimulation but it’s limited to single-site stimulation. Here the authors develop a spiral-shaped LED implant for precise optogenetic stimulation of peripheral nerve bundles at multiple sites and use it to induce distinct limb movements in mice.
Collapse