Winslow C, Rathke P, Rittle J. Multielectron Bond Cleavage Processes Enabled by Redox-Responsive Phosphinimide Ligands.
Inorg Chem 2023;
62:17697-17704. [PMID:
37847032 PMCID:
PMC10618924 DOI:
10.1021/acs.inorgchem.3c02307]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Indexed: 10/18/2023]
Abstract
The activation of small molecules via multielectron redox processes offers promise in mediating difficult transformations related to energy conversion processes. While molecular systems that engage in one- and two-electron redox processes are widespread, those that participate in the direct transfer of four or more electrons to small molecules are very rare. To that end, we report a mononuclear CrII complex competent for the 4-electron reduction of dioxygen (O2) and nitrosoarenes. These systems additionally engage in facile two-electron group transfer reactivity, including O atom excision and nitrene transfer. Structural, spectroscopic, and computational studies support bond activation processes that intimately occur at a mononuclear chromium(phosphinimide) center and highlight the unusual structural responsiveness of the phosphinimides in stabilizing a range of metal redox states.
Collapse