Hu Q, Wang S, Wang L, Gu H, Fan C. DNA Nanostructure-Based Systems for Intelligent Delivery of Therapeutic Oligonucleotides.
Adv Healthc Mater 2018;
7:e1701153. [PMID:
29356400 DOI:
10.1002/adhm.201701153]
[Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 11/27/2017] [Indexed: 12/15/2022]
Abstract
In the beginning of the 21st century, therapeutic oligonucleotides have shown great potential for the treatment of many life-threatening diseases. However, effective delivery of therapeutic oligonucleotides to the targeted location in vivo remains a major issue. As an emerging field, DNA nanotechnology is applied in many aspects including bioimaging, biosensing, and drug delivery. With sequence programming and optimization, a series of DNA nanostructures can be precisely engineered with defined size, shape, surface chemistry, and function. Simply with hybridization, therapeutic oligonucleotides including unmethylated cytosine-phosphate-guanine dinucleotide oligos, small interfering RNA (siRNA) or antisense RNA, single guide RNA of the regularly interspaced short palindromic repeat-Cas9 system, and aptamers, are successfully loaded on DNA nanostructures for delivery. In this progress report, the development history of DNA nanotechnology is first introduced, and then the mechanisms and means for cellular uptake of DNA nanostructures are discussed. Next, current approaches to deliver therapeutic oligonucleotides with DNA nanovehicles are summarized. In the end, the challenges and opportunities for DNA nanostructure-based systems for the delivery of therapeutic oligonucleotides are discussed.
Collapse