1
|
Feng Y, Cong Y, Zhao Y, Zhang C, Song H, Fang B, Yang F, Zhang H, Zhang JZH, Zhang L. "Blade of Polarized Water Molecule" Is the Key to Hydrolase Catalysis Regulation. J Chem Inf Model 2024; 64:7987-7997. [PMID: 39382954 DOI: 10.1021/acs.jcim.4c01123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
Hydrolysis catalyzed by aspartic proteases is a crucial reaction in many biological processes. However, anchoring water molecules and unifying multiple catalytic pathways remain significant challenges. Consequently, molecular design often compromises by focusing on enhancing substrate specificity. Using our self-developed polarizable point charge (PPC) force field, we determined the significant role of polarization in the hydrolase of pepsin for the first time. To be stably anchored in the active site, the water should be intensely polarized with a charge higher than -0.94e. Induced by this polarization, the pepsin was shown to support three general base/general acid pathways, with a preference for the gemdiol-intermediate-based pathway. Consequently, we proposed the "Blade of Polarized Water Molecule" model for rational enzyme design, highlighting that the polarization of both the attacking water and the attacked carbonyl is crucial for enhancing hydrolysis. Mutants D290Q and S172P showed activity enhancements of 191.23% and 324.70%, respectively. The improved polarization of water, carbonyl, and relevant nucleophilic attack distances in the mutants reaffirmed the crucial role of polarization in improving hydrolysis. This study provides a new perspective on hydrolase analysis and modification.
Collapse
Affiliation(s)
- Yinghui Feng
- Shanghai Engineering Research Center of Molecular Therapeutics & New Drug Development, Shanghai Key Laboratory of Green Chemistry & Chemical Process, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Yalong Cong
- Shanghai Engineering Research Center of Molecular Therapeutics & New Drug Development, Shanghai Key Laboratory of Green Chemistry & Chemical Process, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Yue Zhao
- Shanghai Engineering Research Center of Molecular Therapeutics & New Drug Development, Shanghai Key Laboratory of Green Chemistry & Chemical Process, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Chuanxi Zhang
- Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hucheng Song
- Fermentation Microbiology, College of Bioengineering, Tianjin University of Science & Technology, Tianjin 300457, PR China
| | - Bohuan Fang
- Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Furong Yang
- Ningxia Xiasheng Industrial Group Co., Ltd., Yinchuan 750000, China
| | - Huitu Zhang
- Fermentation Microbiology, College of Bioengineering, Tianjin University of Science & Technology, Tianjin 300457, PR China
| | - John Z H Zhang
- Shanghai Engineering Research Center of Molecular Therapeutics & New Drug Development, Shanghai Key Laboratory of Green Chemistry & Chemical Process, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
- NYU-ECNU Center for Computational Chemistry at NYU Shanghai, Shanghai 200062, China
- Department of Chemistry, New York University, New York, New York 10003, United States
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
- Faculty of Synthetic Biology, Shenzhen University of Advanced Technology, Shenzhen, 518055, China
| | - Lujia Zhang
- Shanghai Engineering Research Center of Molecular Therapeutics & New Drug Development, Shanghai Key Laboratory of Green Chemistry & Chemical Process, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
- NYU-ECNU Center for Computational Chemistry at NYU Shanghai, Shanghai 200062, China
| |
Collapse
|
2
|
Villot C, Lao KU. Electronic structure theory on modeling short-range noncovalent interactions between amino acids. J Chem Phys 2023; 158:094301. [PMID: 36889981 DOI: 10.1063/5.0138032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023] Open
Abstract
While short-range noncovalent interactions (NCIs) are proving to be of importance in many chemical and biological systems, these atypical bindings happen within the so-called van der Waals envelope and pose an enormous challenge for current computational methods. We introduce SNCIAA, a database of 723 benchmark interaction energies of short-range noncovalent interactions between neutral/charged amino acids originated from protein x-ray crystal structures at the "gold standard" coupled-cluster with singles, doubles, and perturbative triples/complete basis set [CCSD(T)/CBS] level of theory with a mean absolute binding uncertainty less than 0.1 kcal/mol. Subsequently, a systematic assessment of commonly used computational methods, such as the second-order Møller-Plesset theory (MP2), density functional theory (DFT), symmetry-adapted perturbation theory (SAPT), composite electronic-structure methods, semiempirical approaches, and the physical-based potentials with machine learning (IPML) on SNCIAA is carried out. It is shown that the inclusion of dispersion corrections is essential even though these dimers are dominated by electrostatics, such as hydrogen bondings and salt bridges. Overall, MP2, ωB97M-V, and B3LYP+D4 turned out to be the most reliable methods for the description of short-range NCIs even in strongly attractive/repulsive complexes. SAPT is also recommended in describing short-range NCIs only if the δMP2 correction has been included. The good performance of IPML for dimers at close-equilibrium and long-range conditions is not transferable to the short-range. We expect that SNCIAA will assist the development/improvement/validation of computational methods, such as DFT, force-fields, and ML models, in describing NCIs across entire potential energy surfaces (short-, intermediate-, and long-range NCIs) on the same footing.
Collapse
Affiliation(s)
- Corentin Villot
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284, USA
| | - Ka Un Lao
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284, USA
| |
Collapse
|
3
|
Zanetti-Polzi L, Aschi M, Daidone I. Cooperative protein-solvent tuning of proton transfer energetics: carbonic anhydrase as a case study. Phys Chem Chem Phys 2021; 22:19975-19981. [PMID: 32857091 DOI: 10.1039/d0cp03652h] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
We investigate the coupling between the proton transfer (PT) energetics and the protein-solvent dynamics using the intra-molecular PT in wild type (wt) human carbonic anhydrase II and its ten-fold faster mutant Y7F/N67Q as a test case. We calculate the energy variation upon PT, and from that we also calculate the PT reaction free energy, making use of a hybrid quantum mechanics/molecular dynamics approach. In agreement with the experimental data, we obtain that the reaction free energy is basically the same in the two systems. Yet, we show that the instantaneous PT energy is on average lower in the mutant possibly contributing to the faster PT rate. Analysis of the contribution to the PT energetics of the solvent and of each protein residue, also not in the vicinity of the active site, provides evidence for electrostatic tuning of the PT energy arising from the combined effect of the solvent and the protein environment. These findings open up a way to the more general task of the rational design of mutants with either enhanced or reduced PT rate.
Collapse
Affiliation(s)
| | - Massimiliano Aschi
- Department of Physical and Chemical Sciences, University of L'Aquila, Via Vetoio, I-67010 L'Aquila, Italy.
| | - Isabella Daidone
- Department of Physical and Chemical Sciences, University of L'Aquila, Via Vetoio, I-67010 L'Aquila, Italy.
| |
Collapse
|
4
|
Kumar P, Agarwal PK, Cuneo MJ. On the Case of the Misplaced Hydrogens. Chembiochem 2021; 22:288-297. [PMID: 32706524 PMCID: PMC7952024 DOI: 10.1002/cbic.202000376] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/21/2020] [Indexed: 12/30/2022]
Abstract
Few other elements play a more central role in biology than hydrogen. The interactions, bonding and movement of hydrogen atoms are central to biological catalysis, structure and function. Yet owing to the elusive nature of a single hydrogen atom few experimental and computational techniques can precisely determine its location. This is exemplified in short hydrogen bonds (SHBs) where the location of the hydrogen atom is indicative of the underlying strength of the bonds, which can vary from 1-5 kcal/mol in canonical hydrogen bonds, to an almost covalent nature in single-well hydrogen bonds. Owing to the often-times inferred position of hydrogen, the role of SHBs in biology has remained highly contested and debated. This has also led to discrepancies in computational, biochemical and structural studies of proteins thought to use SHBs in performing chemistry and stabilizing interactions. Herein, we discuss in detail two distinct examples, namely the conserved catalytic triad and the photoreceptor, photoactive yellow protein, where studies of these SHB-containing systems have permitted contextualization of the role these unique hydrogen bonds play in biology.
Collapse
Affiliation(s)
- Prashasti Kumar
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Pratul K Agarwal
- Arium BioLabs LLC, Knoxville, TN, 37932, USA
- Department of Physiological Sciences and High-Performance Computing Center, Oklahoma State University, Stillwater, OK 74078, USA
| | - Matthew J Cuneo
- Department of Structural Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Pl, Memphis, TN, 38103, USA
| |
Collapse
|
5
|
Abstract
Neutron and X-ray crystallography are complementary to each other. While X-ray scattering is directly proportional to the number of electrons of an atom, neutrons interact with the atomic nuclei themselves. Neutron crystallography therefore provides an excellent alternative in determining the positions of hydrogens in a biological molecule. In particular, since highly polarized hydrogen atoms (H+) do not have electrons, they cannot be observed by X-rays. Neutron crystallography has its own limitations, mainly due to inherent low flux of neutrons sources, and as a consequence, the need for much larger crystals and for different data collection and analysis strategies. These technical challenges can however be overcome to yield crucial structural insights about protonation states in enzyme catalysis, ligand recognition, as well as the presence of unusual hydrogen bonds in proteins.
Collapse
|
6
|
Wang JG, Zhang Y, Yu X, Hua X, Wang F, Long YT, Zhu Z. Direct Molecular Evidence of Proton Transfer and Mass Dynamics at the Electrode-Electrolyte Interface. J Phys Chem Lett 2019; 10:251-258. [PMID: 30561218 DOI: 10.1021/acs.jpclett.8b03282] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Proton transfer has been widely regarded as a key step in many electrochemical and biological processes. However, direct molecular evidence has long been lacking. In this work, we chose the electrochemical oxidation of acetaminophen (APAP) as a model system and utilized in situ liquid time-of-flight secondary ion mass spectroscopy (ToF-SIMS) to molecularly examine proton solvation and transfer in this process. In addition, we successfully captured and identified the transient radical intermediate, providing solid molecular evidence to resolve an important debate in electron transfer-proton transfer oxidation mechanism of APAP. Moreover, the potential-dependent behaviors of both inert ions and electroactive species during the dynamic potential scanning were chemically monitored in real time and the mass diffusion mechanism regarding the electroactive and nonelectroactive species was revealed under polarized conditions. The results are consistent with our computer simulations. The observations in this work greatly improved our understanding of proton transfer and mass dynamics occurring at the electrode-electrolyte interface in complex electrochemical processes.
Collapse
Affiliation(s)
- Jun-Gang Wang
- Key Laboratory for Advanced Materials & School of Chemistry and Molecular Engineering , East China University of Science and Technology , 130 Meilong Road , Shanghai 200237 , P. R. China
- Environmental Molecular Sciences Laboratory , Pacific Northwest National Laboratory , Richland , Washington 99354 , United States
| | - Yanyan Zhang
- Environmental Molecular Sciences Laboratory , Pacific Northwest National Laboratory , Richland , Washington 99354 , United States
- Beijing National Laboratory for Molecular Sciences, National Centre for Mass Spectrometry in Beijing, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry , Chinese Academy of Sciences , Beijing 100190 , P. R. China
- University of Chinese Academy of Sciences , Beijing 100049 , P. R. China
| | - Xiaofei Yu
- Environmental Molecular Sciences Laboratory , Pacific Northwest National Laboratory , Richland , Washington 99354 , United States
| | - Xin Hua
- Key Laboratory for Advanced Materials & School of Chemistry and Molecular Engineering , East China University of Science and Technology , 130 Meilong Road , Shanghai 200237 , P. R. China
| | - Fuyi Wang
- Beijing National Laboratory for Molecular Sciences, National Centre for Mass Spectrometry in Beijing, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry , Chinese Academy of Sciences , Beijing 100190 , P. R. China
- University of Chinese Academy of Sciences , Beijing 100049 , P. R. China
| | - Yi-Tao Long
- Key Laboratory for Advanced Materials & School of Chemistry and Molecular Engineering , East China University of Science and Technology , 130 Meilong Road , Shanghai 200237 , P. R. China
| | - Zihua Zhu
- Environmental Molecular Sciences Laboratory , Pacific Northwest National Laboratory , Richland , Washington 99354 , United States
| |
Collapse
|
7
|
Kumar V, Pilati T, Quici S, Chierotti MR, Nervi C, Gobetto R, Resnati G. Proton in a Confined Space: Structural Studies of H + ⊂Crypt-111 Iodide and Some Halogen-Bonded Derivatives. Chemistry 2017; 23:14462-14468. [PMID: 28657685 DOI: 10.1002/chem.201701699] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2017] [Revised: 06/27/2017] [Indexed: 11/06/2022]
Abstract
Experimental observations and modeling data are reported on the solid-state structural features of crypt- 111⋅HI (1) and the three-component co-crystals that 1 forms with α,ω-diiodoperfluoroalkanes 2 a-d. X-ray analyses indicate that, in all five systems and at low temperature, the caged proton is covalently bonded to a single nitrogen atom and is involved in a network of intramolecular hydrogen bonds. In contrast, room-temperature, solid-state 15 N NMR spectroscopy suggests magnetic equivalency of the two N atoms of crypt-111 in both 1 and co-crystals of 1 with diiodoperfluoroalkanes. Computational modelling confirms that the acidic hydrogen inside the cavity preferentially sits along the internitrogen axis and is covalently bonded to one nitrogen. The computed energy barriers suggest that the hopping of the encapsulated proton between the two N atoms of the cage can occur in the halogen-bonded co-crystals of 1⋅2, but it is hardly possible in the pure H+ ⊂crypt-111 iodide 1. These different pictures of the proton position and dynamics obtained by using different techniques and conditions confirm the unique characteristics of the confined space within the cavity of crypr-111 and the distinctive features of processes occurring therein.
Collapse
Affiliation(s)
- Vijith Kumar
- Nanostructured Fluorinated Materials Laboratory (NFMLab), Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Via L. Mancinelli 7, 20131, Milan, Italy
| | - Tullio Pilati
- Nanostructured Fluorinated Materials Laboratory (NFMLab), Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Via L. Mancinelli 7, 20131, Milan, Italy
| | - Silvio Quici
- CNR, Istituto di Scienze e Tecnologie Molecolari, Via C. Golgi 19, 20133, Milan, Italy
| | - Michele R Chierotti
- Department of Chemistry and NIS, University of Turin, Via P. Giuria 7, 10125, Turin, Italy
| | - Carlo Nervi
- Department of Chemistry and NIS, University of Turin, Via P. Giuria 7, 10125, Turin, Italy
| | - Roberto Gobetto
- Department of Chemistry and NIS, University of Turin, Via P. Giuria 7, 10125, Turin, Italy
| | - Giuseppe Resnati
- Nanostructured Fluorinated Materials Laboratory (NFMLab), Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Via L. Mancinelli 7, 20131, Milan, Italy
| |
Collapse
|