1
|
van Gunsteren WF, Oostenbrink C. Methods for Classical-Mechanical Molecular Simulation in Chemistry: Achievements, Limitations, Perspectives. J Chem Inf Model 2024; 64:6281-6304. [PMID: 39136351 DOI: 10.1021/acs.jcim.4c00823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
More than a half century ago it became feasible to simulate, using classical-mechanical equations of motion, the dynamics of molecular systems on a computer. Since then classical-physical molecular simulation has become an integral part of chemical research. It is widely applied in a variety of branches of chemistry and has significantly contributed to the development of chemical knowledge. It offers understanding and interpretation of experimental results, semiquantitative predictions for measurable and nonmeasurable properties of substances, and allows the calculation of properties of molecular systems under conditions that are experimentally inaccessible. Yet, molecular simulation is built on a number of assumptions, approximations, and simplifications which limit its range of applicability and its accuracy. These concern the potential-energy function used, adequate sampling of the vast statistical-mechanical configurational space of a molecular system and the methods used to compute particular properties of chemical systems from statistical-mechanical ensembles. During the past half century various methodological ideas to improve the efficiency and accuracy of classical-physical molecular simulation have been proposed, investigated, evaluated, implemented in general simulation software or were abandoned. The latter because of fundamental flaws or, while being physically sound, computational inefficiency. Some of these methodological ideas are briefly reviewed and the most effective methods are highlighted. Limitations of classical-physical simulation are discussed and perspectives are sketched.
Collapse
Affiliation(s)
- Wilfred F van Gunsteren
- Institute for Molecular Physical Science, Swiss Federal Institute of Technology, ETH, CH-8093 Zurich, Switzerland
| | - Chris Oostenbrink
- Institute of Molecular Modelling and Simulation, BOKU University, 1190 Vienna, Austria
- Christian Doppler Laboratory for Molecular Informatics in the Biosciences, BOKU University, Muthgasse 18, 1190 Vienna, Austria
| |
Collapse
|
2
|
van Gunsteren WF, Daura X, Fuchs PFJ, Hansen N, Horta BAC, Hünenberger PH, Mark AE, Pechlaner M, Riniker S, Oostenbrink C. On the Effect of the Various Assumptions and Approximations used in Molecular Simulations on the Properties of Bio-Molecular Systems: Overview and Perspective on Issues. Chemphyschem 2020; 22:264-282. [PMID: 33377305 DOI: 10.1002/cphc.202000968] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Indexed: 12/14/2022]
Abstract
Computer simulations of molecular systems enable structure-energy-function relationships of molecular processes to be described at the sub-atomic, atomic, supra-atomic or supra-molecular level and plays an increasingly important role in chemistry, biology and physics. To interpret the results of such simulations appropriately, the degree of uncertainty and potential errors affecting the calculated properties must be considered. Uncertainty and errors arise from (1) assumptions underlying the molecular model, force field and simulation algorithms, (2) approximations implicit in the interatomic interaction function (force field), or when integrating the equations of motion, (3) the chosen values of the parameters that determine the accuracy of the approximations used, and (4) the nature of the system and the property of interest. In this overview, advantages and shortcomings of assumptions and approximations commonly used when simulating bio-molecular systems are considered. What the developers of bio-molecular force fields and simulation software can do to facilitate and broaden research involving bio-molecular simulations is also discussed.
Collapse
Affiliation(s)
- Wilfred F van Gunsteren
- Laboratory of Physical Chemistry, Swiss Federal Institute of Technology, ETH, 8093, Zurich, Switzerland
| | - Xavier Daura
- Institute of Biotechnology and Biomedicine, Universitat Autonoma de Barcelona (UAB), 08193, Barcelona, Spain.,Catalan Institution for Research and Advanced Studies (ICREA), 08010, Barcelona, Spain
| | - Patrick F J Fuchs
- Sorbonne Université, Ecole Normale Supérieure, PSL Research University, CNRS, Laboratoire des Biomolécules (LBM), F-75005, Paris, France.,Université de Paris, UFR Sciences du Vivant, F-75013, Paris, France
| | - Niels Hansen
- Institute of Thermodynamics and Thermal Process Engineering, University of Stuttgart, Pfaffenwaldring 9, 70569, Stuttgart, Germany
| | - Bruno A C Horta
- Instituto de Química, Universidade Federal de Rio de Janeiro, Rio de Janeiro, 21941-909, Brazil
| | - Philippe H Hünenberger
- Laboratory of Physical Chemistry, Swiss Federal Institute of Technology, ETH, 8093, Zurich, Switzerland
| | - Alan E Mark
- School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Maria Pechlaner
- Laboratory of Physical Chemistry, Swiss Federal Institute of Technology, ETH, 8093, Zurich, Switzerland
| | - Sereina Riniker
- Laboratory of Physical Chemistry, Swiss Federal Institute of Technology, ETH, 8093, Zurich, Switzerland
| | - Chris Oostenbrink
- Institute of Molecular Modelling and Simulation, University of Natural Resources and Life Sciences, Vienna, Austria
| |
Collapse
|
3
|
Smith LJ, van Gunsteren WF, Hansen N. On the Use of Side-Chain NMR Relaxation Data to Derive Structural and Dynamical Information on Proteins: A Case Study Using Hen Lysozyme. Chembiochem 2020; 22:1049-1064. [PMID: 33146424 PMCID: PMC8048695 DOI: 10.1002/cbic.202000674] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/30/2020] [Indexed: 12/14/2022]
Abstract
Values of S2CH
and S2NH
order parameters derived from NMR relaxation measurements on proteins cannot be used straightforwardly to determine protein structure because they cannot be related to a single protein structure, but are defined in terms of an average over a conformational ensemble. Molecular dynamics simulation can generate a conformational ensemble and thus can be used to restrain S2CH
and S2NH
order parameters towards experimentally derived target values S2CH
(exp) and S2NH
(exp). Application of S2CH
and S2NH
order‐parameter restraining MD simulation to bond vectors in 63 side chains of the protein hen egg white lysozyme using 51 S2CH
(exp) target values and 28 S2NH
(exp) target values shows that a conformational ensemble compatible with the experimentally derived data can be obtained by using this technique. It is observed that S2CH
order‐parameter restraining of C−H bonds in methyl groups is less reliable than S2NH
order‐parameter restraining because of the possibly less valid assumptions and approximations used to derive experimental S2CH
(exp) values from NMR relaxation measurements and the necessity to adopt the assumption of uniform rotational motion of methyl C−H bonds around their symmetry axis and of the independence of these motions from each other. The restrained simulations demonstrate that side chains on the protein surface are highly dynamic. Any hydrogen bonds they form and that appear in any of four different crystal structures, are fluctuating with short lifetimes in solution.
Collapse
Affiliation(s)
- Lorna J Smith
- Department of Chemistry, University of Oxford, Inorganic Chemistry Laboratory, South Parks Road, Oxford, OX1 3QR, UK
| | - Wilfred F van Gunsteren
- Laboratory of Physical Chemistry, Swiss Federal Institute of Technology, ETH, 8093, Zurich, Switzerland
| | - Niels Hansen
- Institute of Thermodynamics and Thermal Process Engineering, University of Stuttgart, 70569, Stuttgart, Germany
| |
Collapse
|
4
|
Turupcu A, Diem M, Smith LJ, Oostenbrink C. Structural Aspects of the O-glycosylation Linkage in Glycopeptides via MD Simulations and Comparison with NMR Experiments. Chemphyschem 2019; 20:1527-1537. [PMID: 30920077 PMCID: PMC6563056 DOI: 10.1002/cphc.201900079] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 03/27/2019] [Indexed: 11/26/2022]
Abstract
A powerful conformational searching and enhanced sampling simulation method, and unbiased molecular dynamics simulations have been used along with NMR spectroscopic observables to provide a detailed structural view of O-glycosylation. For four model systems, the force-field parameters can accurately predict experimental NMR observables (J couplings and NOE's). This enables us to derive conclusions based on the generated ensembles, in which O-glycosylation affects the peptide backbone conformation by forcing it towards to an extended conformation. An exception is described for β-GalNAc-Thr where the α content is increased and stabilized via hydrogen bonding between the sugar and the peptide backbone, which was not observed in the rest of the studied systems. These observations might offer an explanation for the evolutionary preference of α-linked GalNAc glycosylation instead of a β link.
Collapse
Affiliation(s)
- Aysegül Turupcu
- Department of Material Sciences and Process Engineering, Institute of Molecular Modeling and SimulationUniversity of Natural Resources and Life Sciences ViennaViennaAustria
| | - Matthias Diem
- Department of Material Sciences and Process Engineering, Institute of Molecular Modeling and SimulationUniversity of Natural Resources and Life Sciences ViennaViennaAustria
| | | | - Chris Oostenbrink
- Department of Material Sciences and Process Engineering, Institute of Molecular Modeling and SimulationUniversity of Natural Resources and Life Sciences ViennaViennaAustria
| |
Collapse
|
5
|
van Gunsteren WF, Daura X, Hansen N, Mark AE, Oostenbrink C, Riniker S, Smith LJ. Validation of Molecular Simulation: An Overview of Issues. Angew Chem Int Ed Engl 2017; 57:884-902. [PMID: 28682472 DOI: 10.1002/anie.201702945] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Indexed: 12/14/2022]
Abstract
Computer simulation of molecular systems enables structure-energy-function relationships of molecular processes to be described at the sub-atomic, atomic, supra-atomic, or supra-molecular level. To interpret results of such simulations appropriately, the quality of the calculated properties must be evaluated. This depends on the way the simulations are performed and on the way they are validated by comparison to values Qexp of experimentally observable quantities Q. One must consider 1) the accuracy of Qexp , 2) the accuracy of the function Q(rN ) used to calculate a Q-value based on a molecular configuration rN of N particles, 3) the sensitivity of the function Q(rN ) to the configuration rN , 4) the relative time scales of the simulation and experiment, 5) the degree to which the calculated and experimental properties are equivalent, and 6) the degree to which the system simulated matches the experimental conditions. Experimental data is limited in scope and generally corresponds to averages over both time and space. A critical analysis of the various factors influencing the apparent degree of (dis)agreement between simulations and experiment is presented and illustrated using examples from the literature. What can be done to enhance the validation of molecular simulation is also discussed.
Collapse
Affiliation(s)
- Wilfred F van Gunsteren
- Laboratory of Physical Chemistry, Swiss Federal Institute of Technology, ETH, 8093, Zurich, Switzerland
| | - Xavier Daura
- Institute of Biotechnology and Biomedicine, Universitat Autonoma de Barcelona, UAB, 08193, Barcelona, Spain.,Catalan Institution for Research and Advanced Studies, ICREA, 08010, Barcelona, Spain
| | - Niels Hansen
- Institute of Thermodynamics and Thermal Process Engineering, University of Stuttgart, Pfaffenwaldring 9, 70569, Stuttgart, Germany
| | - Alan E Mark
- School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, QLD 4072, Australia
| | - Chris Oostenbrink
- Institute of Molecular Modeling and Simulation, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Sereina Riniker
- Laboratory of Physical Chemistry, Swiss Federal Institute of Technology, ETH, 8093, Zurich, Switzerland
| | - Lorna J Smith
- Department of Chemistry, Inorganic Chemistry, Laboratory, University of Oxford, South Parks Road, Oxford, OX1 3QR, UK
| |
Collapse
|
6
|
van Gunsteren WF, Daura X, Hansen N, Mark AE, Oostenbrink C, Riniker S, Smith LJ. Validierung von molekularen Simulationen: eine Übersicht verschiedener Aspekte. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201702945] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Wilfred F. van Gunsteren
- Laboratorium für Physikalische Chemie; Eidgenössische Technische Hochschule Zürich; 8093 Zürich Schweiz
| | - Xavier Daura
- Institute of Biotechnology and Biomedicine; Universitat Autònoma de Barcelona; Spanien
- Catalan Institution for Research and Advanced Studies, ICREA; Barcelona Spanien
| | - Niels Hansen
- Institut für Technische Thermodynamik und Thermische Verfahrenstechnik; Universität Stuttgart; Deutschland
| | - Alan E. Mark
- School of Chemistry and Molecular Biosciences; University of Queensland; St. Lucia Australien
| | - Chris Oostenbrink
- Institut für Molekulare Modellierung und Simulation; Universität für Bodenkultur Wien; Österreich
| | - Sereina Riniker
- Laboratorium für Physikalische Chemie; Eidgenössische Technische Hochschule Zürich; 8093 Zürich Schweiz
| | - Lorna J. Smith
- Inorganic Chemistry Laboratory; Department of Chemistry; University of Oxford; Großbritannien
| |
Collapse
|
7
|
Smith LJ, van Gunsteren WF, Hansen N. Using Complementary NMR Data Sets To Detect Inconsistencies and Model Flaws in the Structure Determination of Human Interleukin-4. J Phys Chem B 2017. [PMID: 28640620 DOI: 10.1021/acs.jpcb.7b03647] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The derivation of protein structure from values of observable quantities measured in NMR experiments is a rather nontrivial task due to (i) the limited number of data compared to degrees of freedom of a protein, (ii) the uncertainty inherent to the function connecting an observable quantity to molecular structure, (iii) the finite quality of biomolecular models and force fields used in structure refinement, and (iv) the conformational freedom of a protein in aqueous solution, which requires extensive conformational sampling and appropriate conformational averaging when calculating or restraining to sets of NMR data. The protein interleukin-4 (IL-4) has been taken as a test case using NOE distances, S2 order parameters, and 3J-couplings as test data and the former two types of data as restraints. It is shown that, by combining sets of different, complementary NMR data as restraints in MD simulations, inconsistencies in the data or flaws in the model and procedures used to derive protein structure from NMR data can be detected. This leads to an improved structural interpretation of such data particularly in more mobile loop regions.
Collapse
Affiliation(s)
- Lorna J Smith
- Department of Chemistry, University of Oxford, Inorganic Chemistry Laboratory , South Parks Road, Oxford OX1 3QR, United Kingdom
| | - Wilfred F van Gunsteren
- Laboratory of Physical Chemistry, Swiss Federal Institute of Technology, ETH , CH-8093 Zürich, Switzerland
| | - Niels Hansen
- Institute of Thermodynamics and Thermal Process Engineering, University of Stuttgart , D-70569 Stuttgart, Germany
| |
Collapse
|
8
|
Smith LJ, Athill R, van Gunsteren WF, Hansen N. Interpretation of Seemingly Contradictory Data: Low NMR S 2 Order Parameters Observed in Helices and High NMR S 2 Order Parameters in Disordered Loops of the Protein hGH at Low pH. Chemistry 2017; 23:9585-9591. [PMID: 28503764 DOI: 10.1002/chem.201700896] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Indexed: 12/16/2022]
Abstract
At low pH, human growth hormone (hGH) adopts a partially folded state, in which the native helices are maintained, but the long loop regions and side-chain packing become disordered. Some of the S2 order parameters for backbone N-H vectors derived from NMR relaxation measurements on hGH at low pH initially seem contradictory. Three isolated residues (15, 20, and 171) in helices A and D exhibit low order parameter values (<0.5) indicating flexibility, whereas residue 143 in the centre of a long flexible loop region has a high order parameter (0.82). Using S2 order parameter restraining MD simulations, this paradox has been resolved. Low S2 values in helices are due to the presence of a mixture of 310 -helical and α-helical hydrogen bonds. High S2 values in relatively disordered parts of a protein may be due to fluctuating networks of hydrogen bonds between the backbone and the side chains, which restrict the motion of N-H bond vectors.
Collapse
Affiliation(s)
- Lorna J Smith
- Department of Chemistry, University of Oxford, Inorganic Chemistry Laboratory, South Parks Road, Oxford, OX1 3QR, UK
| | - Roya Athill
- Department of Chemistry, University of Oxford, Inorganic Chemistry Laboratory, South Parks Road, Oxford, OX1 3QR, UK
| | | | - Niels Hansen
- Institute of Thermodynamics and Thermal Process Engineering, University of Stuttgart, 70569, Stuttgart, Germany
| |
Collapse
|