1
|
García-Faustino LL, Morris SM, Elston SJ, Montelongo Y. Detection of Biomarkers through Functionalized Polymers. SMALL METHODS 2024; 8:e2301025. [PMID: 37814377 DOI: 10.1002/smtd.202301025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Indexed: 10/11/2023]
Abstract
Over the past decade, there has been a rising interest in utilizing functionalized porous polymers for sensor applications. By incorporating functional groups into nanostructured materials like hydrogels, nanosheets, and nanopores, exciting new opportunities have emerged for biomarker detection. The ability of functionalized polymers to undergo physical changes and deformations makes them perfect for modulating optical signals. This chemical mechanism enables the creation of biocompatible sensors for in situ biomarker measurement. Here a comprehensive overview of the current publication trends is provided in functionalized polymers, encompassing functional groups that can induce measurable physical deformations. It explores various materials categorized based on their detection targets, which include proteins, carbohydrates, ions, and deoxyribonucleic acid. As such, this work serves as a valuable reference for the development of functionalized polymer-based sensors.
Collapse
Affiliation(s)
- Litzy L García-Faustino
- School of Engineering and Sciences, Tecnológico de Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey, NL, 64849, Mexico
| | - Stephen M Morris
- Department of Engineering Science, University of Oxford, Parks Road, Oxford, OX1 3PJ, UK
| | - Steve J Elston
- Department of Engineering Science, University of Oxford, Parks Road, Oxford, OX1 3PJ, UK
| | - Yunuen Montelongo
- Department of Engineering Science, University of Oxford, Parks Road, Oxford, OX1 3PJ, UK
| |
Collapse
|
2
|
Offenbartl‐Stiegert D, Rottensteiner A, Dorey A, Howorka S. A Light-Triggered Synthetic Nanopore for Controlling Molecular Transport Across Biological Membranes. Angew Chem Int Ed Engl 2022; 61:e202210886. [PMID: 36318092 PMCID: PMC10098474 DOI: 10.1002/anie.202210886] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Indexed: 11/06/2022]
Abstract
Controlling biological molecular processes with light is of interest in biological research and biomedicine, as light allows precise and selective activation in a non-invasive and non-toxic manner. A molecular process benefitting from light control is the transport of cargo across biological membranes, which is conventionally achieved by membrane-puncturing barrel-shaped nanopores. Yet, there is also considerable gain in constructing more complex gated pores. Here, we pioneer a synthetic light-gated nanostructure which regulates transport across membranes via a controllable lid. The light-triggered nanopore is self-assembled from six pore-forming DNA strands and a lid strand carrying light-switchable azobenzene molecules. Exposure to light opens the pore to allow small-molecule transport across membranes. Our light-triggered pore advances biomimetic chemistry and DNA nanotechnology and may be used in biotechnology, biosensing, targeted drug release, or synthetic cells.
Collapse
Affiliation(s)
- Daniel Offenbartl‐Stiegert
- Department of ChemistryInstitute for Structural and Molecular BiologyUniversity College LondonWC1H0AJLondonUK
| | - Alexia Rottensteiner
- Department of ChemistryInstitute for Structural and Molecular BiologyUniversity College LondonWC1H0AJLondonUK
| | - Adam Dorey
- Department of ChemistryInstitute for Structural and Molecular BiologyUniversity College LondonWC1H0AJLondonUK
| | - Stefan Howorka
- Department of ChemistryInstitute for Structural and Molecular BiologyUniversity College LondonWC1H0AJLondonUK
| |
Collapse
|
3
|
A Nanopore Sensing Assay Resolves Cascade Reactions in a Multienzyme System. Angew Chem Int Ed Engl 2022; 61:e202200866. [DOI: 10.1002/anie.202200866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Indexed: 11/07/2022]
|
4
|
Lu J, Jiang Y, Yu P, Jiang W, Mao L. Light-Controlled Ionic/Molecular Transport through Solid-State Nanopores and Nanochannels. Chem Asian J 2022; 17:e202200158. [PMID: 35324076 DOI: 10.1002/asia.202200158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/24/2022] [Indexed: 11/10/2022]
Abstract
Biological nanochannels perfectly operate in organisms and exquisitely control mass transmembrane transport for complex life process. Inspired by biological nanochannels, plenty of intelligent artificial solid-state nanopores and nanochannels are constructed based on various materials and methods with the development of nanotechnology. Specially, the light-controlled nanopores/nanochannels have attracted much attention due to the unique advantages in terms of that ion and molecular transport can be regulated remotely, spatially and temporally. According to the structure and function of biological ion channels, light-controlled solid-state nanopores/nanochannels can be divided into light-regulated ion channels with ion gating and ion rectification functions, and light-driven ion pumps with active ion transport property. In this review, we present a systematic overview of light-controlled ion channels and ion pumps according to the photo-responsive components in the system. Then, the related applications of solid-state nanopores/nanochannels for molecular sensing, water purification and energy conversion are discussed. Finally, a brief conclusion and short outlook are offered for future development of the nanopore/nanochannel field.
Collapse
Affiliation(s)
- Jiahao Lu
- Shandong University, School of Chemistry and Chemical Engineering, CHINA
| | - Yanan Jiang
- Beijing Normal University, College of Chemistry, CHINA
| | - Ping Yu
- Chinese Academy of Sciences, Institute of Chemistry, CHINA
| | - Wei Jiang
- Shandong University, School of Chemistry and Chemical Engineering, CHINA
| | - Lanqun Mao
- Beijing Normal University, College of Chemistry, No.19, Xinjiekouwai St, Haidian District, 100875, Beijing, CHINA
| |
Collapse
|
5
|
Sheng Y, Zhou K, Liu L, Wu HC. A Nanopore Sensing Assay Resolves Cascade Reactions in a Multienzyme System. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202200866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Yingying Sheng
- Institute of Chemistry CAS: Institute of Chemistry Chinese Academy of Sciences Key laboratory of Analytical Chemistry for Living Biosystems 100191 Beijing CHINA
| | - Ke Zhou
- Institute of Chemistry CAS: Institute of Chemistry Chinese Academy of Sciences Key Laboratory of Analytical Chemistry for Living Biosystems 100191 Beijing CHINA
| | - Lei Liu
- Institute of High Energy Physics Chinese Academy of Sciences Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety CHINA
| | - Hai-Chen Wu
- Institute of Chemistry Chinese Academy of Sciences Key Laboratory of Analytical Chemistry for Living Biosystems Zhongguancun North First Street 2 100190 Beijing CHINA
| |
Collapse
|
6
|
Farag N, Mattossovich R, Merlo R, Nierzwicki Ł, Palermo G, Porchetta A, Perugino G, Ricci F. Folding-upon-Repair DNA Nanoswitches for Monitoring the Activity of DNA Repair Enzymes. Angew Chem Int Ed Engl 2021; 60:7283-7289. [PMID: 33415794 PMCID: PMC8783695 DOI: 10.1002/anie.202016223] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Indexed: 09/28/2023]
Abstract
We present a new class of DNA-based nanoswitches that, upon enzymatic repair, could undergo a conformational change mechanism leading to a change in fluorescent signal. Such folding-upon-repair DNA nanoswitches are synthetic DNA sequences containing O6 -methyl-guanine (O6 -MeG) nucleobases and labelled with a fluorophore/quencher optical pair. The nanoswitches are rationally designed so that only upon enzymatic demethylation of the O6 -MeG nucleobases they can form stable intramolecular Hoogsteen interactions and fold into an optically active triplex DNA structure. We have first characterized the folding mechanism induced by the enzymatic repair activity through fluorescent experiments and Molecular Dynamics simulations. We then demonstrated that the folding-upon-repair DNA nanoswitches are suitable and specific substrates for different methyltransferase enzymes including the human homologue (hMGMT) and they allow the screening of novel potential methyltransferase inhibitors.
Collapse
Affiliation(s)
- Nada Farag
- Department of Chemistry, University of Rome Tor Vergata, Via della Ricerca Scientifica, 00133, Rome, Italy
| | - Rosanna Mattossovich
- Institute of Biosciences and BioResources, National Research Council of Italy, Via Pietro Castellino 111, 80131, Naples, Italy
| | - Rosa Merlo
- Institute of Biosciences and BioResources, National Research Council of Italy, Via Pietro Castellino 111, 80131, Naples, Italy
| | - Łukasz Nierzwicki
- Department of Bioengineering, University of California Riverside, 900 University Avenue, Riverside, CA, 52512, USA
| | - Giulia Palermo
- Department of Bioengineering, University of California Riverside, 900 University Avenue, Riverside, CA, 52512, USA
- Department of Chemistry, University of California Riverside, 900 University Avenue, Riverside, CA, 52512, USA
| | - Alessandro Porchetta
- Department of Chemistry, University of Rome Tor Vergata, Via della Ricerca Scientifica, 00133, Rome, Italy
| | - Giuseppe Perugino
- Institute of Biosciences and BioResources, National Research Council of Italy, Via Pietro Castellino 111, 80131, Naples, Italy
| | - Francesco Ricci
- Department of Chemistry, University of Rome Tor Vergata, Via della Ricerca Scientifica, 00133, Rome, Italy
| |
Collapse
|
7
|
Farag N, Mattossovich R, Merlo R, Nierzwicki Ł, Palermo G, Porchetta A, Perugino G, Ricci F. Folding‐upon‐Repair DNA Nanoswitches for Monitoring the Activity of DNA Repair Enzymes. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202016223] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Nada Farag
- Department of Chemistry University of Rome Tor Vergata Via della Ricerca Scientifica 00133 Rome Italy
| | - Rosanna Mattossovich
- Institute of Biosciences and BioResources National Research Council of Italy Via Pietro Castellino 111 80131 Naples Italy
| | - Rosa Merlo
- Institute of Biosciences and BioResources National Research Council of Italy Via Pietro Castellino 111 80131 Naples Italy
| | - Łukasz Nierzwicki
- Department of Bioengineering University of California Riverside 900 University Avenue Riverside CA 52512 USA
| | - Giulia Palermo
- Department of Bioengineering University of California Riverside 900 University Avenue Riverside CA 52512 USA
- Department of Chemistry University of California Riverside 900 University Avenue Riverside CA 52512 USA
| | - Alessandro Porchetta
- Department of Chemistry University of Rome Tor Vergata Via della Ricerca Scientifica 00133 Rome Italy
| | - Giuseppe Perugino
- Institute of Biosciences and BioResources National Research Council of Italy Via Pietro Castellino 111 80131 Naples Italy
| | - Francesco Ricci
- Department of Chemistry University of Rome Tor Vergata Via della Ricerca Scientifica 00133 Rome Italy
| |
Collapse
|
8
|
|
9
|
Liu L, Li T, Zhang S, Song P, Guo B, Zhao Y, Wu HC. Simultaneous Quantification of Multiple Cancer Biomarkers in Blood Samples through DNA-Assisted Nanopore Sensing. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201803324] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Lei Liu
- Beijing National Laboratory for Molecular Sciences; Key Laboratory of Analytical Chemistry for Living Biosystems; Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 China
- Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety; Institute of High Energy Physics; Chinese Academy of Sciences; Beijing 100049 China
| | - Ting Li
- Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety; Institute of High Energy Physics; Chinese Academy of Sciences; Beijing 100049 China
| | - Shouwen Zhang
- Epilepsy Department; Beijing ChaoYang Emergency Medical Center; Beijing 100021 China
| | - Peng Song
- Department of Geriatric Oncology; General Hospital of the Chinese People's Liberation Army; Beijing 100853 China
| | - Bingyuan Guo
- Beijing National Laboratory for Molecular Sciences; Key Laboratory of Analytical Chemistry for Living Biosystems; Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 China
- Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety; Institute of High Energy Physics; Chinese Academy of Sciences; Beijing 100049 China
| | - Yuliang Zhao
- Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety; Institute of High Energy Physics; Chinese Academy of Sciences; Beijing 100049 China
| | - Hai-Chen Wu
- Beijing National Laboratory for Molecular Sciences; Key Laboratory of Analytical Chemistry for Living Biosystems; Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 China
| |
Collapse
|
10
|
Liu L, Li T, Zhang S, Song P, Guo B, Zhao Y, Wu HC. Simultaneous Quantification of Multiple Cancer Biomarkers in Blood Samples through DNA-Assisted Nanopore Sensing. Angew Chem Int Ed Engl 2018; 57:11882-11887. [DOI: 10.1002/anie.201803324] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Indexed: 12/28/2022]
Affiliation(s)
- Lei Liu
- Beijing National Laboratory for Molecular Sciences; Key Laboratory of Analytical Chemistry for Living Biosystems; Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 China
- Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety; Institute of High Energy Physics; Chinese Academy of Sciences; Beijing 100049 China
| | - Ting Li
- Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety; Institute of High Energy Physics; Chinese Academy of Sciences; Beijing 100049 China
| | - Shouwen Zhang
- Epilepsy Department; Beijing ChaoYang Emergency Medical Center; Beijing 100021 China
| | - Peng Song
- Department of Geriatric Oncology; General Hospital of the Chinese People's Liberation Army; Beijing 100853 China
| | - Bingyuan Guo
- Beijing National Laboratory for Molecular Sciences; Key Laboratory of Analytical Chemistry for Living Biosystems; Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 China
- Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety; Institute of High Energy Physics; Chinese Academy of Sciences; Beijing 100049 China
| | - Yuliang Zhao
- Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety; Institute of High Energy Physics; Chinese Academy of Sciences; Beijing 100049 China
| | - Hai-Chen Wu
- Beijing National Laboratory for Molecular Sciences; Key Laboratory of Analytical Chemistry for Living Biosystems; Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 China
| |
Collapse
|
11
|
Guo B, Sheng Y, Zhou K, Liu Q, Liu L, Wu HC. Analyte-Triggered DNA-Probe Release from a Triplex Molecular Beacon for Nanopore Sensing. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201711690] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Bingyuan Guo
- Beijing National Laboratory for Molecular Sciences; Key Laboratory of Analytical Chemistry for Living Biosystems; Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 China
- Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, Multidisciplinary Center; Institute of High Energy Physics; Chinese Academy of Sciences; Beijing 100049 China
- University of Chinese Academy of Sciences; Beijing 100049 China
| | - Yingying Sheng
- Beijing National Laboratory for Molecular Sciences; Key Laboratory of Analytical Chemistry for Living Biosystems; Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 China
| | - Ke Zhou
- Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, Multidisciplinary Center; Institute of High Energy Physics; Chinese Academy of Sciences; Beijing 100049 China
| | - Quansheng Liu
- Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, Multidisciplinary Center; Institute of High Energy Physics; Chinese Academy of Sciences; Beijing 100049 China
| | - Lei Liu
- Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, Multidisciplinary Center; Institute of High Energy Physics; Chinese Academy of Sciences; Beijing 100049 China
| | - Hai-Chen Wu
- Beijing National Laboratory for Molecular Sciences; Key Laboratory of Analytical Chemistry for Living Biosystems; Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 China
| |
Collapse
|
12
|
Guo B, Sheng Y, Zhou K, Liu Q, Liu L, Wu HC. Analyte-Triggered DNA-Probe Release from a Triplex Molecular Beacon for Nanopore Sensing. Angew Chem Int Ed Engl 2018; 57:3602-3606. [PMID: 29488675 DOI: 10.1002/anie.201711690] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 01/14/2018] [Indexed: 12/26/2022]
Abstract
A new nanopore sensing strategy based on triplex molecular beacon was developed for the detection of specific DNA or multivalent proteins. The sensor is composed of a triplex-forming molecular beacon and a stem-forming DNA component that is modified with a host-guest complex. Upon target DNA hybridizing with the molecular beacon loop or multivalent proteins binding to the recognition elements on the stem, the DNA probe is released and produces highly characteristic current signals when translocated through α-hemolysin. The frequency of current signatures can be used to quantify the concentrations of the target molecules. This sensing approach provides a simple, quick, and modular tool for the detection of specific macromolecules with high sensitivity and excellent selectivity. It may find useful applications in point-of-care diagnostics with a portable nanopore kit in the future.
Collapse
Affiliation(s)
- Bingyuan Guo
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, Multidisciplinary Center, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yingying Sheng
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Ke Zhou
- Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, Multidisciplinary Center, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Quansheng Liu
- Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, Multidisciplinary Center, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Lei Liu
- Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, Multidisciplinary Center, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Hai-Chen Wu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| |
Collapse
|