1
|
Krenn M, Ai Q, Barthel S, Carson N, Frei A, Frey NC, Friederich P, Gaudin T, Gayle AA, Jablonka KM, Lameiro RF, Lemm D, Lo A, Moosavi SM, Nápoles-Duarte JM, Nigam A, Pollice R, Rajan K, Schatzschneider U, Schwaller P, Skreta M, Smit B, Strieth-Kalthoff F, Sun C, Tom G, Falk von Rudorff G, Wang A, White AD, Young A, Yu R, Aspuru-Guzik A. SELFIES and the future of molecular string representations. PATTERNS (NEW YORK, N.Y.) 2022; 3:100588. [PMID: 36277819 PMCID: PMC9583042 DOI: 10.1016/j.patter.2022.100588] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Artificial intelligence (AI) and machine learning (ML) are expanding in popularity for broad applications to challenging tasks in chemistry and materials science. Examples include the prediction of properties, the discovery of new reaction pathways, or the design of new molecules. The machine needs to read and write fluently in a chemical language for each of these tasks. Strings are a common tool to represent molecular graphs, and the most popular molecular string representation, Smiles, has powered cheminformatics since the late 1980s. However, in the context of AI and ML in chemistry, Smiles has several shortcomings-most pertinently, most combinations of symbols lead to invalid results with no valid chemical interpretation. To overcome this issue, a new language for molecules was introduced in 2020 that guarantees 100% robustness: SELF-referencing embedded string (Selfies). Selfies has since simplified and enabled numerous new applications in chemistry. In this perspective, we look to the future and discuss molecular string representations, along with their respective opportunities and challenges. We propose 16 concrete future projects for robust molecular representations. These involve the extension toward new chemical domains, exciting questions at the interface of AI and robust languages, and interpretability for both humans and machines. We hope that these proposals will inspire several follow-up works exploiting the full potential of molecular string representations for the future of AI in chemistry and materials science.
Collapse
Affiliation(s)
- Mario Krenn
- Max Planck Institute for the Science of Light (MPL), Erlangen, Germany
| | - Qianxiang Ai
- Department of Chemistry, Fordham University, The Bronx, NY, USA
| | - Senja Barthel
- Department of Mathematics, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Nessa Carson
- Syngenta Jealott’s Hill International Research Centre, Bracknell, Berkshire, UK
| | - Angelo Frei
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City Campus, Wood Lane, London, UK
| | - Nathan C. Frey
- Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Pascal Friederich
- Institute of Theoretical Informatics, Karlsruhe Institute of Technology, Karlsruhe, Germany
- Institute of Nanotechnology, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| | - Théophile Gaudin
- Department of Computer Science, University of Toronto, Toronto, ON, Canada
- IBM Research Europe, Zürich, Switzerland
| | | | - Kevin Maik Jablonka
- Laboratory of Molecular Simulation (LSMO), Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), Sion, Valais, Switzerland
| | - Rafael F. Lameiro
- Medicinal and Biological Chemistry Group, São Carlos Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Dominik Lemm
- Faculty of Physics, University of Vienna, Vienna, Austria
| | - Alston Lo
- Department of Computer Science, University of Toronto, Toronto, ON, Canada
| | - Seyed Mohamad Moosavi
- Department of Mathematics and Computer Science, Freie Universität Berlin, Berlin, Germany
| | | | - AkshatKumar Nigam
- Department of Computer Science, Stanford University, Stanford, CA, USA
| | - Robert Pollice
- Department of Computer Science, University of Toronto, Toronto, ON, Canada
- Chemical Physics Theory Group, Department of Chemistry, University of Toronto, Toronto, ON, Canada
| | - Kohulan Rajan
- Institute for Inorganic and Analytical Chemistry, Friedrich-Schiller Universität Jena, Jena, Germany
| | - Ulrich Schatzschneider
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Philippe Schwaller
- IBM Research Europe, Zürich, Switzerland
- Laboratory of Artificial Chemical Intelligence (LIAC), Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- National Centre of Competence in Research (NCCR) Catalysis, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Marta Skreta
- Department of Computer Science, University of Toronto, Toronto, ON, Canada
- Vector Institute for Artificial Intelligence, Toronto, ON, Canada
| | - Berend Smit
- Laboratory of Molecular Simulation (LSMO), Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), Sion, Valais, Switzerland
| | - Felix Strieth-Kalthoff
- Chemical Physics Theory Group, Department of Chemistry, University of Toronto, Toronto, ON, Canada
| | - Chong Sun
- Department of Computer Science, University of Toronto, Toronto, ON, Canada
| | - Gary Tom
- Department of Computer Science, University of Toronto, Toronto, ON, Canada
- Chemical Physics Theory Group, Department of Chemistry, University of Toronto, Toronto, ON, Canada
| | | | - Andrew Wang
- Chemical Physics Theory Group, Department of Chemistry, University of Toronto, Toronto, ON, Canada
- Solar Fuels Group, Department of Chemistry, University of Toronto, Toronto, ON, Canada
| | - Andrew D. White
- Department of Chemical Engineering, University of Rochester, Rochester, NY, USA
| | - Adamo Young
- Department of Computer Science, University of Toronto, Toronto, ON, Canada
- Vector Institute for Artificial Intelligence, Toronto, ON, Canada
| | - Rose Yu
- Department of Computer Science and Engineering, University of California, San Diego, La Jolla, CA, USA
| | - Alán Aspuru-Guzik
- Department of Computer Science, University of Toronto, Toronto, ON, Canada
- Chemical Physics Theory Group, Department of Chemistry, University of Toronto, Toronto, ON, Canada
- Vector Institute for Artificial Intelligence, Toronto, ON, Canada
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, Canada
- Department of Materials Science, University of Toronto, Toronto, ON, Canada
- Canadian Institute for Advanced Research (CIFAR) Lebovic Fellow, Toronto, ON, Canada
| |
Collapse
|
2
|
da Silva Santos M, Stüker T, Flach M, Ablyasova OS, Timm M, von Issendorff B, Hirsch K, Zamudio‐Bayer V, Riedel S, Lau JT. The Highest Oxidation State of Rhodium: Rhodium(VII) in [RhO 3 ] . Angew Chem Int Ed Engl 2022; 61:e202207688. [PMID: 35818987 PMCID: PMC9544489 DOI: 10.1002/anie.202207688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Indexed: 11/23/2022]
Abstract
Although the highest possible oxidation states of all transition elements are rare, they are not only of fundamental interest but also relevant as potentially strong oxidizing agents. In general, the highest oxidation states are found in the electron-rich late transition elements of groups 7-9 of the periodic table. Rhodium is the first element of the 4d transition metal series for which the highest known oxidation state does not equal its group number of 9, but reaches only a significantly lower value of +6 in exceptional cases. Higher oxidation states of rhodium have remained elusive so far. In a combined mass spectrometry, X-ray absorption spectroscopy, and quantum-chemical study of gas-phaseR h O n + (n=1-4), we identifyR h O 3 + as the1 A 1 ' trioxidorhodium(VII) cation, the first chemical species to contain rhodium in the +7 oxidation state, which is the third-highest oxidation state experimentally verified among all elements in the periodic table.
Collapse
Affiliation(s)
- Mayara da Silva Santos
- Physikalisches InstitutAlbert-Ludwigs-Universität FreiburgHermann-Herder-Straße 379104FreiburgGermany
- Abteilung für Hochempfindliche RöntgenspektroskopieHelmholtz-Zentrum Berlin für Materialien und EnergieAlbert-Einstein-Straße 1512489BerlinGermany
| | - Tony Stüker
- Institut für Chemie und Biochemie–Anorganische ChemieFreie Universität BerlinFabeckstraße 34/3614195BerlinGermany
| | - Max Flach
- Physikalisches InstitutAlbert-Ludwigs-Universität FreiburgHermann-Herder-Straße 379104FreiburgGermany
- Abteilung für Hochempfindliche RöntgenspektroskopieHelmholtz-Zentrum Berlin für Materialien und EnergieAlbert-Einstein-Straße 1512489BerlinGermany
| | - Olesya S. Ablyasova
- Physikalisches InstitutAlbert-Ludwigs-Universität FreiburgHermann-Herder-Straße 379104FreiburgGermany
- Abteilung für Hochempfindliche RöntgenspektroskopieHelmholtz-Zentrum Berlin für Materialien und EnergieAlbert-Einstein-Straße 1512489BerlinGermany
| | - Martin Timm
- Abteilung für Hochempfindliche RöntgenspektroskopieHelmholtz-Zentrum Berlin für Materialien und EnergieAlbert-Einstein-Straße 1512489BerlinGermany
| | - Bernd von Issendorff
- Physikalisches InstitutAlbert-Ludwigs-Universität FreiburgHermann-Herder-Straße 379104FreiburgGermany
| | - Konstantin Hirsch
- Abteilung für Hochempfindliche RöntgenspektroskopieHelmholtz-Zentrum Berlin für Materialien und EnergieAlbert-Einstein-Straße 1512489BerlinGermany
| | - Vicente Zamudio‐Bayer
- Abteilung für Hochempfindliche RöntgenspektroskopieHelmholtz-Zentrum Berlin für Materialien und EnergieAlbert-Einstein-Straße 1512489BerlinGermany
| | - Sebastian Riedel
- Institut für Chemie und Biochemie–Anorganische ChemieFreie Universität BerlinFabeckstraße 34/3614195BerlinGermany
| | - J. Tobias Lau
- Physikalisches InstitutAlbert-Ludwigs-Universität FreiburgHermann-Herder-Straße 379104FreiburgGermany
- Abteilung für Hochempfindliche RöntgenspektroskopieHelmholtz-Zentrum Berlin für Materialien und EnergieAlbert-Einstein-Straße 1512489BerlinGermany
| |
Collapse
|
3
|
da Silva Santos M, Stüker T, Flach M, Ablyasova OS, Timm M, von Issendorff B, Hirsch K, Zamudio-Bayer V, Riedel S, Lau JT. The Highest Oxidation State of Rhodium: Rhodium(VII) in [RhO3]+. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202207688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Mayara da Silva Santos
- Helmholtz-Zentrum Berlin für Materialien und Energie Physics Albert-Eistein-Str. 15 12489 Berlin GERMANY
| | - Tony Stüker
- Freie Universitat Berlin Institut für Chemie und Biochemie – Anorganische Chemie Fabeckstraße 34/36 14195 Berlin GERMANY
| | - Max Flach
- Helmholtz-Zentrum Berlin fur Materialien und Energie GmbH Abteilung für Hochempfindliche Röntgenspektroskopie Albert-Einstein-Straße 15 12489 Berlin GERMANY
| | - Olesya S. Ablyasova
- Helmholtz-Zentrum Berlin fur Materialien und Energie GmbH Abteilung für Hochempfindliche Röntgenspektroskopie Albert-Einstein-Straße 15 12489 Berlin GERMANY
| | - Martin Timm
- Helmholtz-Zentrum Berlin fur Materialien und Energie GmbH Abteilung für Hochempfindliche Röntgenspektroskopie Albert-Einstein-Straße 15 12489 Berlin GERMANY
| | - Bernd von Issendorff
- Albert-Ludwigs-Universitat Freiburg Physikalisches Institut Hermann-Herder-Straße 3 79104 Freiburg GERMANY
| | - Konstantin Hirsch
- Helmholtz-Zentrum Berlin fur Materialien und Energie GmbH Abteilung für Hochempfindliche Röntgenspektroskopie Albert-Einstein-Straße 15 12489 Berlin GERMANY
| | - Vicente Zamudio-Bayer
- Helmholtz-Zentrum Berlin fur Materialien und Energie GmbH Abteilung für Hochempfindliche Röntgenspektroskopie 12489 Berlin GERMANY
| | - Sebastian Riedel
- Freie Universitat Berlin Institut für Chemie und Biochemie – Anorganische Chemie Fabeckstraße 34/36 14195 Berlin GERMANY
| | - J. Tobias Lau
- Helmholtz-Zentrum Berlin fur Materialien und Energie GmbH Abteilung für Hochempfindliche Röntgenspektroskopie Albert-Einstein-Straße 15 12489 Berlin GERMANY
| |
Collapse
|
4
|
Mayer M, Vankova N, Stolz F, Abel B, Heine T, Asmis KR. Identification of a Two-Coordinate Iron(I)-Oxalate Complex. Angew Chem Int Ed Engl 2022; 61:e202117855. [PMID: 35088489 PMCID: PMC9303725 DOI: 10.1002/anie.202117855] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Indexed: 12/16/2022]
Abstract
Exotic oxidation states of the first-row transition metals have recently attracted much interest. In order to investigate the oxidation states of a series of iron-oxalate complexes, an aqueous solution of iron(III) nitrate and oxalic acid was studied by infrared free liquid matrix-assisted laser desorption/ionization as well as ionspray mass spectrometry. Here, we show that iron is not only detected in its common oxidation states +II and +III, but also in its unusual oxidation state +I, detectable in both positive-ion and in negative-ion modes, respectively. Vibrational spectra of the gas phase anionic iron oxalate complexes [FeIII (C2 O4 )2 ]- , [FeII (C2 O4 )CO2 ]- , and [FeI (C2 O4 )]- were measured by means of infrared photodissociation spectroscopy and their structures were assigned by comparison to anharmonic vibrational spectra based on second-order perturbation theory.
Collapse
Affiliation(s)
- Martin Mayer
- Wilhelm-Ostwald-Institut für Physikalische und Theoretische ChemieUniversität LeipzigLinnéstr. 204103LeipzigGermany
| | - Nina Vankova
- Theoretische ChemieTechnische Universität DresdenBergstr. 66c01062DresdenGermany
| | - Ferdinand Stolz
- Leibniz Institute for Surface Engineering (IOM)Permoserstr. 1504318LeipzigGermany
| | - Bernd Abel
- Wilhelm-Ostwald-Institut für Physikalische und Theoretische ChemieUniversität LeipzigLinnéstr. 204103LeipzigGermany
- Leibniz Institute for Surface Engineering (IOM)Permoserstr. 1504318LeipzigGermany
| | - Thomas Heine
- Theoretische ChemieTechnische Universität DresdenBergstr. 66c01062DresdenGermany
- Helmholtz-Zentrum Dresden-RossendorfForschungsstelle LeipzigPermoserstr. 1504318LeipzigGermany
- Department of ChemistryYonsei UniversitySeodaemun-gu, Seoul120-749Republic of Korea
| | - Knut R. Asmis
- Wilhelm-Ostwald-Institut für Physikalische und Theoretische ChemieUniversität LeipzigLinnéstr. 204103LeipzigGermany
| |
Collapse
|
5
|
Mayer M, Vankova N, Stolz F, Abel B, Heine T, Asmis KR. Identification of a Two‐Coordinate Iron(I)‐Oxalate Complex. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202117855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Martin Mayer
- Universität Leipzig: Universitat Leipzig Wilhelm-Ostwald-Institut GERMANY
| | - Nina Vankova
- Technische Universität Dresden: Technische Universitat Dresden Theoretische Chemie GERMANY
| | - Ferdinand Stolz
- Leibniz Institute for Surface Modification: Leibniz-Institut fur Oberflachenmodifizierung eV Chemistry GERMANY
| | - Bernd Abel
- Leibniz Institute for Surface Modification: Leibniz-Institut fur Oberflachenmodifizierung eV Chemistry GERMANY
| | - Thomas Heine
- TU Dresden: Technische Universitat Dresden Theoretische Chemie GERMANY
| | - Knut R Asmis
- Universitat Leipzig Wilhelm-Ostwald-Institut für Physikalische und Theoretische Chemie Linnéstr. 2 04103 Leipzig GERMANY
| |
Collapse
|
6
|
Lin J, Du X, Rahm M, Yu H, Xu H, Yang G. Exploring the Limits of Transition‐Metal Fluorination at High Pressures. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202002339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Jianyan Lin
- Centre for Advanced Optoelectronic Functional Materials Research and Key Laboratory for UV Light-Emitting Materials and Technology of Ministry of Education Northeast Normal University Changchun 130024 China
| | - Xin Du
- Centre for Advanced Optoelectronic Functional Materials Research and Key Laboratory for UV Light-Emitting Materials and Technology of Ministry of Education Northeast Normal University Changchun 130024 China
| | - Martin Rahm
- Department of Chemistry and Chemical Engineering Chalmers University of Technology 41296 Gothenburg Sweden
| | - Hong Yu
- Centre for Advanced Optoelectronic Functional Materials Research and Key Laboratory for UV Light-Emitting Materials and Technology of Ministry of Education Northeast Normal University Changchun 130024 China
| | - Haiyang Xu
- Centre for Advanced Optoelectronic Functional Materials Research and Key Laboratory for UV Light-Emitting Materials and Technology of Ministry of Education Northeast Normal University Changchun 130024 China
| | - Guochun Yang
- Centre for Advanced Optoelectronic Functional Materials Research and Key Laboratory for UV Light-Emitting Materials and Technology of Ministry of Education Northeast Normal University Changchun 130024 China
| |
Collapse
|
7
|
Lin J, Du X, Rahm M, Yu H, Xu H, Yang G. Exploring the Limits of Transition-Metal Fluorination at High Pressures. Angew Chem Int Ed Engl 2020; 59:9155-9162. [PMID: 32150319 DOI: 10.1002/anie.202002339] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Indexed: 01/08/2023]
Abstract
Fluorination is a proven method for challenging the limits of chemistry, both structurally and electronically. Here we explore computationally how pressures below 300 GPa affect the fluorination of several transition metals. A plethora of new structural phases are predicted along with the possibility for synthesizing four unobserved compounds: TcF7 , CdF3 , OsF8 , and IrF8 . The Ir and Os octaflourides are both predicted to be stable as quasi-molecular phases with an unusual cubic ligand coordination, and both compounds formally correspond to a high oxidation state of +8. Electronic-structure analysis reveals that otherwise unoccupied 6p levels are brought down in energy by the combined effects of pressure and a strong ligand field. The valence expansion of Os and Ir enables ligand-to-metal F 2p→M 6p charge transfer that strengthens M-F bonds and decreases the overall bond polarity. The lower stability of IrF8 , and the instability of PtF8 and several other compounds below 300 GPa, is explained by the occupation of M-F antibonding orbitals in octafluorides with a metal-valence-electron count exceeding 8.
Collapse
Affiliation(s)
- Jianyan Lin
- Centre for Advanced Optoelectronic Functional Materials Research and Key Laboratory for UV Light-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, Changchun, 130024, China
| | - Xin Du
- Centre for Advanced Optoelectronic Functional Materials Research and Key Laboratory for UV Light-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, Changchun, 130024, China
| | - Martin Rahm
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 41296, Gothenburg, Sweden
| | - Hong Yu
- Centre for Advanced Optoelectronic Functional Materials Research and Key Laboratory for UV Light-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, Changchun, 130024, China
| | - Haiyang Xu
- Centre for Advanced Optoelectronic Functional Materials Research and Key Laboratory for UV Light-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, Changchun, 130024, China
| | - Guochun Yang
- Centre for Advanced Optoelectronic Functional Materials Research and Key Laboratory for UV Light-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, Changchun, 130024, China
| |
Collapse
|
8
|
Wolański Ł, Domański M, Grochala W, Szarek P. Beyond Oxides: Nitride as a Ligand in a Neutral Ir IX NO 3 Molecule Bearing a Transition Metal at High Oxidation State. Chemistry 2019; 25:10290-10293. [PMID: 31119805 DOI: 10.1002/chem.201902142] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 05/22/2019] [Indexed: 11/11/2022]
Abstract
Theoretical calculations utilizing relativistic ZORA Hamiltonian point to the conceivable existence of an IrNO3 molecule in C3v geometry. This minimum is shown to correspond to genuine nonavalent iridium nitride trioxide, which is a neutral analogue of cationic [IrO4 ]+ species detected recently. Despite the presence of nitride anion, the molecule is protected by substantial barriers exceeding 200 kJ mol-1 against transformations leading, for example, to global minimum (O=)2 Ir-NO, which contains metal at a lower formal oxidation state.
Collapse
Affiliation(s)
- Łukasz Wolański
- Centre of New Technologies, University of Warsaw, S. Banacha 2c, 02-097, Warsaw, Poland
| | - Mateusz Domański
- Centre of New Technologies, University of Warsaw, S. Banacha 2c, 02-097, Warsaw, Poland.,Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664, Warsaw, Poland
| | - Wojciech Grochala
- Centre of New Technologies, University of Warsaw, S. Banacha 2c, 02-097, Warsaw, Poland
| | - Paweł Szarek
- Centre of New Technologies, University of Warsaw, S. Banacha 2c, 02-097, Warsaw, Poland
| |
Collapse
|
9
|
ACS 2019 National Award Winners. Angew Chem Int Ed Engl 2019; 58:5167-5168. [DOI: 10.1002/anie.201902122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
10
|
Gewinner der ACS National Awards 2019. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201902122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
11
|
Postils V, Delgado‐Alonso C, Luis JM, Salvador P. An Objective Alternative to IUPAC's Approach To Assign Oxidation States. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201802745] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Verònica Postils
- Institut de Química Computacional i Catàlisi i Departament de QuímicaUniversitat de Girona Maria Aurèlia Capmany 69 17003 Girona Spain
| | - Carlos Delgado‐Alonso
- Institut de Química Computacional i Catàlisi i Departament de QuímicaUniversitat de Girona Maria Aurèlia Capmany 69 17003 Girona Spain
| | - Josep M. Luis
- Institut de Química Computacional i Catàlisi i Departament de QuímicaUniversitat de Girona Maria Aurèlia Capmany 69 17003 Girona Spain
| | - Pedro Salvador
- Institut de Química Computacional i Catàlisi i Departament de QuímicaUniversitat de Girona Maria Aurèlia Capmany 69 17003 Girona Spain
| |
Collapse
|
12
|
Postils V, Delgado-Alonso C, Luis JM, Salvador P. An Objective Alternative to IUPAC's Approach To Assign Oxidation States. Angew Chem Int Ed Engl 2018; 57:10525-10529. [PMID: 29787636 DOI: 10.1002/anie.201802745] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 04/25/2018] [Indexed: 11/11/2022]
Abstract
The IUPAC has recently clarified the term oxidation state (OS), and provided algorithms for its determination based on the ionic approximation (IA) of the bonds supported by atomic electronegativities (EN). Unfortunately, there are a number of exceptions and ambiguities in IUPAC's algorithms when it comes to practical applications. Our comprehensive study reveals the critical role of the chemical environment on establishing the OS, which cannot always be properly predicted using fix atomic EN values. By identifying what we define here as subsystems of enhanced stability within the molecular system, the OS can be safely assigned in many cases without invoking exceptions. New insights about the effect of local aromaticity upon OS are revealed. Moreover, we prove that there are intrinsic limitations of the IA that cannot be overcome. In this context, the effective oxidation state (EOS) analysis arises as a robust and general scheme to derive an OS without any external guidance.
Collapse
Affiliation(s)
- Verònica Postils
- Institut de Química Computacional i Catàlisi i Departament de Química, Universitat de Girona, Maria Aurèlia Capmany 69, 17003, Girona, Spain
| | - Carlos Delgado-Alonso
- Institut de Química Computacional i Catàlisi i Departament de Química, Universitat de Girona, Maria Aurèlia Capmany 69, 17003, Girona, Spain
| | - Josep M Luis
- Institut de Química Computacional i Catàlisi i Departament de Química, Universitat de Girona, Maria Aurèlia Capmany 69, 17003, Girona, Spain
| | - Pedro Salvador
- Institut de Química Computacional i Catàlisi i Departament de Química, Universitat de Girona, Maria Aurèlia Capmany 69, 17003, Girona, Spain
| |
Collapse
|
13
|
Hu S, Li W, Lu J, Bao JL, Yu HS, Truhlar DG, Gibson JK, Marçalo J, Zhou M, Riedel S, Schwarz WHE, Li J. On the Upper Limits of Oxidation States in Chemistry. Angew Chem Int Ed Engl 2018; 57:3242-3245. [DOI: 10.1002/anie.201711450] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 12/18/2017] [Indexed: 11/11/2022]
Affiliation(s)
- Shu‐Xian Hu
- Key Laboratory of Organic Optoelectronics & Molecular Engineering of the Ministry of Education Department of Chemistry Tsinghua University Beijing 100084 China
- Beijing Computer Science Research Center Haidian Beijing 100193 China
| | - Wan‐Lu Li
- Key Laboratory of Organic Optoelectronics & Molecular Engineering of the Ministry of Education Department of Chemistry Tsinghua University Beijing 100084 China
| | - Jun‐Bo Lu
- Key Laboratory of Organic Optoelectronics & Molecular Engineering of the Ministry of Education Department of Chemistry Tsinghua University Beijing 100084 China
| | - Junwei Lucas Bao
- Chemical Theory Center, Department of Chemistry, and Minnesota Supercomputing Institute University of Minnesota Minneapolis MN 55455-0431 USA
| | - Haoyu S. Yu
- Chemical Theory Center, Department of Chemistry, and Minnesota Supercomputing Institute University of Minnesota Minneapolis MN 55455-0431 USA
| | - Donald G. Truhlar
- Chemical Theory Center, Department of Chemistry, and Minnesota Supercomputing Institute University of Minnesota Minneapolis MN 55455-0431 USA
| | - John K. Gibson
- Chemical Sciences Division Lawrence Berkeley National Laboratory Berkeley CA 94720 USA
| | - Joaquim Marçalo
- Centro de Ciências e Tecnologias Nucleares Instituto Superior Técnico Universidade de Lisboa 2695-066 Bobadela LRS Portugal
| | - Mingfei Zhou
- Department of Chemistry Fudan University Shanghai 200433 China
| | - Sebastian Riedel
- Anorganische Chemie Institut für Chemie und Biochemie Freie Universität Berlin 14195 Berlin Germany
| | - W. H. Eugen Schwarz
- Key Laboratory of Organic Optoelectronics & Molecular Engineering of the Ministry of Education Department of Chemistry Tsinghua University Beijing 100084 China
- Physical and Theoretical Chemistry Lab Universität Siegen 57068 Siegen Germany
| | - Jun Li
- Key Laboratory of Organic Optoelectronics & Molecular Engineering of the Ministry of Education Department of Chemistry Tsinghua University Beijing 100084 China
| |
Collapse
|
14
|
Hu S, Li W, Lu J, Bao JL, Yu HS, Truhlar DG, Gibson JK, Marçalo J, Zhou M, Riedel S, Schwarz WHE, Li J. Über Oxidationszahl‐Obergrenzen in der Chemie. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201711450] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Shu‐Xian Hu
- Key Laboratory of Organic Optoelectronics & Molecular Engineering of the Ministry of Education Department of Chemistry Tsinghua University Beijing 100084 China
- Beijing Computer Science Research Center Haidian Beijing 100193 China
| | - Wan‐Lu Li
- Key Laboratory of Organic Optoelectronics & Molecular Engineering of the Ministry of Education Department of Chemistry Tsinghua University Beijing 100084 China
| | - Jun‐Bo Lu
- Key Laboratory of Organic Optoelectronics & Molecular Engineering of the Ministry of Education Department of Chemistry Tsinghua University Beijing 100084 China
| | - Junwei Lucas Bao
- Chemical Theory Center Department of Chemistry, and Minnesota Supercomputing Institute University of Minnesota Minneapolis MN 55455-0431 USA
| | - Haoyu S. Yu
- Chemical Theory Center Department of Chemistry, and Minnesota Supercomputing Institute University of Minnesota Minneapolis MN 55455-0431 USA
| | - Donald G. Truhlar
- Chemical Theory Center Department of Chemistry, and Minnesota Supercomputing Institute University of Minnesota Minneapolis MN 55455-0431 USA
| | - John K. Gibson
- Chemical Sciences Division Lawrence Berkeley National Laboratory Berkeley CA 94720 USA
| | - Joaquim Marçalo
- Centro de Ciências e Tecnologias Nucleares Instituto Superior Técnico Universidade de Lisboa 2695-066 Bobadela LRS Portugal
| | - Mingfei Zhou
- Department of Chemistry Fudan University Shanghai 200433 China
| | - Sebastian Riedel
- Anorganische Chemie Institut für Chemie und Biochemie Freie Universität Berlin 14195 Berlin Deutschland
| | - W. H. Eugen Schwarz
- Key Laboratory of Organic Optoelectronics & Molecular Engineering of the Ministry of Education Department of Chemistry Tsinghua University Beijing 100084 China
- Physical and Theoretical Chemistry Lab Universität Siegen 57068 Siegen Deutschland
| | - Jun Li
- Key Laboratory of Organic Optoelectronics & Molecular Engineering of the Ministry of Education Department of Chemistry Tsinghua University Beijing 100084 China
| |
Collapse
|
15
|
Kouno M, Yoshinari N, Kuwamura N, Yamagami K, Sekiyama A, Okumura M, Konno T. Valence Interconversion of Octahedral Nickel(II/III/IV) Centers. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201708169] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Masahiro Kouno
- Department of Chemistry Graduate School of Science Osaka University Toyonaka Osaka 560-0043 Japan
| | - Nobuto Yoshinari
- Department of Chemistry Graduate School of Science Osaka University Toyonaka Osaka 560-0043 Japan
| | - Naoto Kuwamura
- Department of Chemistry Graduate School of Science Osaka University Toyonaka Osaka 560-0043 Japan
| | - Kohei Yamagami
- Division of Materials Physics Graduate School of Engineering Science Osaka University Toyonaka Osaka 560-8531 Japan
| | - Akira Sekiyama
- Division of Materials Physics Graduate School of Engineering Science Osaka University Toyonaka Osaka 560-8531 Japan
| | - Mitsutaka Okumura
- Department of Chemistry Graduate School of Science Osaka University Toyonaka Osaka 560-0043 Japan
| | - Takumi Konno
- Department of Chemistry Graduate School of Science Osaka University Toyonaka Osaka 560-0043 Japan
| |
Collapse
|
16
|
Kouno M, Yoshinari N, Kuwamura N, Yamagami K, Sekiyama A, Okumura M, Konno T. Valence Interconversion of Octahedral Nickel(II/III/IV) Centers. Angew Chem Int Ed Engl 2017; 56:13762-13766. [PMID: 28846211 DOI: 10.1002/anie.201708169] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Indexed: 11/06/2022]
Abstract
Three oxidation states (+2, +3, +4) of an octahedral nickel center were stabilized in a newly prepared RhNiRh trinuclear complex, [Ni{Rh(apt)3 }2 ]n+ (apt=3- aminopropanethiolate), in which the nickel center was bound by six thiolato donors sourced from two redox-inert fac-[RhIII (apt)3 ] octahedral units. The three oxidation states of the octahedral nickel center were fully characterized by single-crystal X-ray crystallography, as well as spectroscopic, electrochemical, and magnetic measurements; all three were interconvertible, and the conversion was accompanied by changes in color, magnetism, and Jahn-Teller distortion.
Collapse
Affiliation(s)
- Masahiro Kouno
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka, 560-0043, Japan
| | - Nobuto Yoshinari
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka, 560-0043, Japan
| | - Naoto Kuwamura
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka, 560-0043, Japan
| | - Kohei Yamagami
- Division of Materials Physics, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka, 560-8531, Japan
| | - Akira Sekiyama
- Division of Materials Physics, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka, 560-8531, Japan
| | - Mitsutaka Okumura
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka, 560-0043, Japan
| | - Takumi Konno
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka, 560-0043, Japan
| |
Collapse
|
17
|
Goesten MG, Rahm M, Bickelhaupt FM, Hensen EJM. Cesium's Off-the-Map Valence Orbital. Angew Chem Int Ed Engl 2017; 56:9772-9776. [PMID: 28643352 PMCID: PMC5601296 DOI: 10.1002/anie.201704118] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Indexed: 11/12/2022]
Abstract
The Td -symmetric [CsO4 ]+ ion, featuring Cs in an oxidation state of 9, is computed to be a minimum. Cs uses outer core 5s and 5p orbitals to bind the oxygen atoms. The valence Cs 6s orbital lies too high to be involved in bonding, and contributes to Rydberg levels only. From a molecular orbital perspective, the bonding scheme is reminiscent of XeO4 : an octet of electrons to bind electronegative ligands, and no low-lying acceptor orbitals on the central atom. In this sense, Cs+ resembles hypervalent Xe.
Collapse
Affiliation(s)
- Maarten G. Goesten
- Inorganic Materials ChemistrySchuit Institute of CatalysisEindhoven University of TechnologyP.O. Box 5135600 MBEindhovenThe Netherlands
- Department of Chemistry and Chemical BiologyCornell UniversityBaker Laboratory259 East AveIthacaNY14850USA
| | - Martin Rahm
- Department of Chemistry and Chemical BiologyCornell UniversityBaker Laboratory259 East AveIthacaNY14850USA
| | - F. Matthias Bickelhaupt
- Department of Theoretical Chemistry and Amsterdam Center for Multiscale Modeling (ACMM)Vrije Universiteit AmsterdamDe Boelelaan 10831081 HVAmsterdamThe Netherlands
- Institute of Molecules and Materials (IMM)Radboud UniversityHeyendaalseweg 1356525 AJNijmegenThe Netherlands
| | - Emiel J. M. Hensen
- Inorganic Materials ChemistrySchuit Institute of CatalysisEindhoven University of TechnologyP.O. Box 5135600 MBEindhovenThe Netherlands
| |
Collapse
|
18
|
Goesten MG, Rahm M, Bickelhaupt FM, Hensen EJM. Cesium's Off‐the‐Map Valence Orbital. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201704118] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Maarten G. Goesten
- Inorganic Materials ChemistrySchuit Institute of CatalysisEindhoven University of Technology P.O. Box 513 5600 MB Eindhoven The Netherlands
- Department of Chemistry and Chemical BiologyCornell UniversityBaker Laboratory 259 East Ave Ithaca NY 14850 USA
| | - Martin Rahm
- Department of Chemistry and Chemical BiologyCornell UniversityBaker Laboratory 259 East Ave Ithaca NY 14850 USA
| | - F. Matthias Bickelhaupt
- Department of Theoretical Chemistry and Amsterdam Center for Multiscale Modeling (ACMM)Vrije Universiteit Amsterdam De Boelelaan 1083 1081 HV Amsterdam The Netherlands
- Institute of Molecules and Materials (IMM)Radboud University Heyendaalseweg 135 6525 AJ Nijmegen The Netherlands
| | - Emiel J. M. Hensen
- Inorganic Materials ChemistrySchuit Institute of CatalysisEindhoven University of Technology P.O. Box 513 5600 MB Eindhoven The Netherlands
| |
Collapse
|