1
|
Ma X, Lin L, Luo H, Zheng Q, Wang H, Li X, Wang Z, Feng Y, Chen Y. Construction and Performance Study of a Dual-Network Hydrogel Dressing Mimicking Skin Pore Drainage for Photothermal Exudate Removal and On-Demand Dissolution. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403362. [PMID: 39073303 PMCID: PMC11423237 DOI: 10.1002/advs.202403362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/14/2024] [Indexed: 07/30/2024]
Abstract
In recent years, negative pressure wound dressings have garnered widespread attentions. However, it is challenging to drain the accumulated fluid under negative pressures for hydrogel dressings. To address this issue, this study prepared a chemical/physical duel-network PEG-CMCS/AG/MXene hydrogel composed by chemical disulfide crosslinked network of four-arm polyethylene glycol/carboxymethyl chitosan (4-Arm-PEG-SH/CMCS), and the physical network of hydrogen bond of agar (AG). Under near-infrared light (NIR) irradiation, the PEG-CMCS/AG/MXene hydrogel undergoes photothermal heating due to integrate of MXene, which destructs the hydrogen bond network and allows the removal of exudate through a mechanism mimicking the sweat gland-like effect of skin pores. The photothermal heating effect also enables the antimicrobial activity to prevent wound infections. The excellent electrical conductivity of PEG-CMCS/AG/MXene can promote cell proliferation under the external electrical stimulation (ES) in vitro. The animal experiments of full-thickness skin defect model further demonstrate its ability to accelerate wound healing. The conversion between thioester and thiol achieved with L-cysteine methyl ester hydrochloride (L-CME) can provides the on-demand dissolution of the dressing in situ. This study holds promises to provide a novel solution to the issue of fluid accumulations under hydrogel dressings and offers new approaches to alleviating or avoiding the significant secondary injuries caused by frequent dressing changes.
Collapse
Affiliation(s)
- Xiaoxiao Ma
- School of Medical TechnologyBeijing Institute of TechnologyBeijing100081China
| | - Lizhi Lin
- School of Medical TechnologyBeijing Institute of TechnologyBeijing100081China
| | - Hang Luo
- School of Medical TechnologyBeijing Institute of TechnologyBeijing100081China
| | - Qianqian Zheng
- Department of Polymer Science and EngineeringZhejiang UniversityZhejiang310027China
| | - Hui Wang
- School of Materials Science and EngineeringBeijing Institute of TechnologyBeijing100081China
| | - Xiaoyan Li
- School of Medical TechnologyBeijing Institute of TechnologyBeijing100081China
| | - Zhenfei Wang
- School of Medical TechnologyBeijing Institute of TechnologyBeijing100081China
| | - Yongqiang Feng
- Plastic Surgery Hospital of Peking Union Medical College and Chinese Academy of Medical SciencesBeijing100144China
| | - Yu Chen
- School of Medical TechnologyBeijing Institute of TechnologyBeijing100081China
- School of Materials Science and EngineeringBeijing Institute of TechnologyBeijing100081China
| |
Collapse
|
2
|
Zhang R, Wang S, Ma X, Jiang S, Chen T, Du Y, Cheng M, Liu J, Yuan Y, Ye T, Wang S. In situ gelation strategy based on ferrocene-hyaluronic acid organic copolymer biomaterial for exudate management and multi-modal wound healing. Acta Biomater 2022; 154:180-193. [PMID: 36243366 DOI: 10.1016/j.actbio.2022.09.076] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 09/13/2022] [Accepted: 09/29/2022] [Indexed: 12/14/2022]
Abstract
Exudate management remains a major concern in slow or non-healing wound management. Therefore, there is a need to devise a massive exudate-absorbing, exudate-locking, and stable extracellular matrix structure-maintaining functional wound dressing. Inspired by metal-organic frameworks, we chemically introduced sandwich ferrocene (Fc) into hyaluronic acid (HA) to fabricate an innovative metal Fc-HA organic copolymer (FHoC) as the skeleton material for in situ gelation, which was then gently compressed into a pre-hydrogel patch (FHoCP). Fc promoted the rearrangement of polymer chains to form additional microcrystalline and hydrophobic regions, which improved hydrogel transition and the exudate-locking ability. Thus, the simple composition FHoCP(5) absorbed 150 times its weight of water and maintained a firm three-dimensional network, which contributed to reducing inflammation and acted as a physical barrier against hemostasis and anti-bacterial invasion. Meanwhile, multi-modal processes, including fibroblast migration, angiogenesis, and antibacterial effects, were integrated into the gelled FHoCP(5) guided by Fe to promote wound healing. This study suggested that FHoC biomaterial could accelerate the closure of chronic wounds. We believe that this unique FHoCP(5)-based in situ gelation strategy could provide a solid drug-loaded scaffold for cell or adjunctive drug therapies, which holds great potential for the development of multifunctional biomaterials. STATEMENT OF SIGNIFICANCE: Hydrogels that absorb excessive exudates while maintaining stable ECM-like network as well as exert multimodal wound healing activities are ideal dressings for accelerating chronic wound contraction. Herein, we reported an innovative metal ferrocene-hyaluronic acid organic copolymer patch (FHoCP) and FHoCP-mediated in situ gelation strategy. Ferrocene (Fc) induced in situ gelation by promoting polymer chain rearrangement, acting as a physical barrier for hemostasis and anti-bacterial invasion, and absorbing massive exudates, resulting in reducing delayed inflammation. As the structural core, rigid Fc enhanced the stability of the hydrogel backbone, and hydrophobic Fc improved fibroblast migration. In addition, Fe2+ chemically inhibited bacteria and increased angiogenesis. These results indicated the potential of FHoCP-based hydrogel for application in clinical skin reconstruction.
Collapse
Affiliation(s)
- Rui Zhang
- Department of Pharmaceutics, College of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Sixue Wang
- Department of Pharmaceutics, College of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xiaofan Ma
- Department of Pharmaceutics, College of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Shan Jiang
- Chinese medicine (traditional Chinese medicine preparation direction), College of traditional Chinese Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Taoxi Chen
- Department of Pharmaceutics, College of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yuhao Du
- Chinese medicine (traditional Chinese medicine preparation direction), College of traditional Chinese Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Muhua Cheng
- Department of Pharmaceutics, College of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jun Liu
- Department of Pharmaceutics, College of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China; Shenyang Junhong Pharmaceutical Co., Ltd., Shenyang, Liaoning, China
| | - Yue Yuan
- Department of Pharmaceutics, College of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Tiantian Ye
- Department of Pharmaceutics, College of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Shujun Wang
- Department of Pharmaceutics, College of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China.
| |
Collapse
|
3
|
Chang S, Li C, Xu N, Wang J, Jing Z, Cai H, Tian Y, Wang S, Liu Z, Wang X. A sustained release of alendronate from an injectable tetra-PEG hydrogel for efficient bone repair. Front Bioeng Biotechnol 2022; 10:961227. [PMID: 36177182 PMCID: PMC9513246 DOI: 10.3389/fbioe.2022.961227] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 07/04/2022] [Indexed: 01/07/2023] Open
Abstract
Significant efforts on construction of smart drug delivery for developing minimally invasive gelling system to prolong local delivery of bisphosphonates are considered as promising perspectives for the bone-related diseases, which provide the hydrogels with unique bioactivities for bone repair in clinic. Herein, we have constructed an alendronate (ALN)-conjoined injectable tetra-PEG hydrogel with excellent biocompatibility, uniform network, and favorable mechanical properties in one-pot strategy. In views of the quick ammonolysis reaction between N-hydroxysuccinimide (NHS)-ester of tetra-PEG-SG and amine groups of tetra-PEG-NH2 polymer and ALN molecules, the uniform networks were formed within seconds along with the easy injection, favorable biocompatibility and mechanical properties for hydrogel scaffolds. On account of the simultaneous physical encapsulation and chemical linkage of the ALN within the hydrogels, the ALN-conjoined tetra-PEG hydrogel exhibited a sustained drug release delivery that could persistently and effectively facilitate viability, growth, proliferation, and osteogenesis differentiation of stem cells, thereby allowing the consequent adaptation of hydrogels into the bone defects with irregular shapes, which endowed the ALN-conjoined tetra-PEG hydrogel with depot formulation capacity for governing the on-demand release of ALN drugs. Consequently, the findings imply that these drug-based tetra-PEG hydrogels mediate optimal release of therapeutic cargoes and effective promotion of in situ bone regeneration, which will be broadly utilized as therapeutic scaffolds in tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Shuai Chang
- Department of Orthopedics, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Spinal Disease Research, Peking University Third Hospital, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Peking University Third Hospital, Beijing, China
| | - Chao Li
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
- Senior Department of Orthopedics, the Fourth Medical Center of PLA General Hospital, Beijing, China
| | - Nanfang Xu
- Department of Orthopedics, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Spinal Disease Research, Peking University Third Hospital, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Peking University Third Hospital, Beijing, China
| | - Jiedong Wang
- Department of Orthopedics, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Spinal Disease Research, Peking University Third Hospital, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Peking University Third Hospital, Beijing, China
| | - Zehao Jing
- Department of Orthopedics, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Spinal Disease Research, Peking University Third Hospital, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Peking University Third Hospital, Beijing, China
| | - Hong Cai
- Department of Orthopedics, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Spinal Disease Research, Peking University Third Hospital, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Peking University Third Hospital, Beijing, China
| | - Yun Tian
- Department of Orthopedics, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Spinal Disease Research, Peking University Third Hospital, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Peking University Third Hospital, Beijing, China
| | - Shaobo Wang
- Department of Orthopedics, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Spinal Disease Research, Peking University Third Hospital, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Peking University Third Hospital, Beijing, China
| | - Zhongjun Liu
- Department of Orthopedics, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Spinal Disease Research, Peking University Third Hospital, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Peking University Third Hospital, Beijing, China
- *Correspondence: Zhongjun Liu, ; Xing Wang,
| | - Xing Wang
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- *Correspondence: Zhongjun Liu, ; Xing Wang,
| |
Collapse
|
4
|
Li H, Guillaume SM, Carpentier J. Polythioesters Prepared by Ring-Opening Polymerization of Cyclic Thioesters and Related Monomers. Chem Asian J 2022; 17:e202200641. [PMID: 35816010 PMCID: PMC9543045 DOI: 10.1002/asia.202200641] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/07/2022] [Indexed: 11/11/2022]
Abstract
Polyhydroxyalkanoates (PHAs) are biodegradable and biocompatible polyesters with a wide range of applications; in particular, they currently stand as promising alternatives to conventional polyolefin-based "plastics". The introduction of sulfur atoms within the PHAs backbone can endow the resulting polythioesters (PTEs) with differentiated, sometimes enhanced thermal, optical and mechanical properties, thereby widening their versatility and use. Hence, PTEs have been gaining increasing attention over the past half-decade. This review highlights recent advances towards the synthesis of well-defined PTEs by ring-opening polymerization (ROP) of cyclic thioesters - namely thiolactones - as well as of S-carboxyanhydrides and thionolactones; it also covers the ring-opening copolymerization (ROCOP) of cyclic thioanhydrides or thiolactones with epoxides or episulfides. Most of the ROP reactions described are of anionic type, mediated by inorganic, organic or organometallic initiators/catalysts, along with a few enzymatic reactions as well. Emphasis is placed on the reactivity of the thio monomers, in relation to their ring-size ranging from 4- to 5-, 6- and 7-membered cycles, the nature of the catalyst/initiating systems implemented and their efficiency in terms of activity and control over the PTE molar mass, dispersity, topology, and microstructure.
Collapse
Affiliation(s)
- Hui Li
- Univ RennesCNRSISCR-UMR 622635000RennesFrance
| | | | | |
Collapse
|
5
|
Evaluation of Bacterial Cellulose Dressing versus Vaseline Gauze in Partial Thickness Burn Wounds and Skin Graft Donor Sites: A Two-Center Randomized Controlled Clinical Study. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:5217617. [PMID: 35656475 PMCID: PMC9155909 DOI: 10.1155/2022/5217617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 04/08/2022] [Accepted: 04/25/2022] [Indexed: 11/29/2022]
Abstract
Objective Bacterial cellulose (BC) dressing, which can maintain a moist environment and prevent the invasion of pathogens, has become a competitive dressing material for burn wound treatment. This study was conducted to evaluate the treatment efficacy of a novel China-made BC dressing for the treatment of second-degree burn wounds and skin graft donor sites. Methods 212 patients with second-degree burn wounds or skin graft donor sites were enrolled from two research centers. They were randomly assigned to the BC dressing group (study group) or the Vaseline gauze (VG) dressing group (control group). Wound conditions were assessed before and after treatment. Dressings were changed according to the condition of the wound bed. Healing rate and healing time were recorded as primary endpoints to evaluate the efficacy of BC dressing against VG dressing. Erythema, swelling, exudation, bleeding, subeschar purulence, and pain were assessed as secondary endpoints. Results 207 participants completed the trial and their wounds all healed within 28 days. The average healing times for superficial and deep secondary burn wounds and skin graft donor sites in the BC group were 8.12, 15.77, and 10.55 days, respectively. In the VG group, the average healing times for superficial and deep secondary burn wounds and skin graft donor sites were 9.30, 15.27, and 11.19 days, respectively. The healing time of superficial burn wounds in the BC group was statistically shorter than that in the VG group. There was no difference in the frequency of dressing changing between two groups. The BC dressing showed equal efficacy with the VG dressing at all secondary endpoints. Conclusion The novel BC dressing could be used for the management of second-degree burn wounds and skin graft donor sites. With a shorter healing time in superficial secondary burn wound than that of the VG dressing, the BC dressing showed noninferiority in the treatment of superficial and deep secondary burn wounds and skin graft donor sites versus the VG dressing. This study is registered with the Chinese Clinical Trial Registry (registry number: ChiCTR1800014377 (http://www.chictr.org.cn)).
Collapse
|
6
|
Li H, Ollivier J, Guillaume SM, Carpentier JF. Tacticity Control of Cyclic Poly(3-Thiobutyrate) Prepared by Ring-Opening Polymerization of Racemic β-Thiobutyrolactone. Angew Chem Int Ed Engl 2022; 61:e202202386. [PMID: 35286752 DOI: 10.1002/anie.202202386] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Indexed: 12/19/2022]
Abstract
We report here on the ring-opening polymerization (ROP) of racemic β-thiobutyrolactone (rac-TBL), as the first chemical synthesis of poly(3-thiobutyrolactone) (P3TB), the thioester analogue of the ubiquitous poly(3-hydroxybutyrate) (P3HB). The ROP reactions proceed very fast (TOF >12 000 h-1 at r.t.) in the presence of various metal-based catalysts. Remarkably, catalyst systems based on non-chiral yttrium complexes stabilized by tetradentate amino alkoxy- or diamino-bis(phenolate) ligands {ONXOR1,R2 }2- (X=O, N) provide access to cyclic P3TB with either high isoselectivity (Pm up to 0.90) or high syndiotactic bias (Pr up to 0.70). The stereoselectivity can be controlled by manipulation of the substituents on the ligand platform and adequate choice of the reaction solvent and temperature as well. The cyclic polymer topology is evidenced by MALDI-ToF MS, NMR and TGA. Highly isotactic cyclic P3TB is a semi-crystalline material as revealed by DSC.
Collapse
Affiliation(s)
- Hui Li
- Univ Rennes, CNRS, ISCR-UMR 6226, 35000, Rennes, France
| | | | | | | |
Collapse
|
7
|
Li H, Ollivier J, Guillaume SM, Carpentier J. Tacticity Control of Cyclic Poly(3‐Thiobutyrate) Prepared by Ring‐Opening Polymerization of Racemic β‐Thiobutyrolactone. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202202386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Hui Li
- Univ Rennes, CNRS, ISCR-UMR 6226 35000 Rennes France
| | | | | | | |
Collapse
|
8
|
Hydrogels in Burn Wound Management-A Review. Gels 2022; 8:gels8020122. [PMID: 35200503 PMCID: PMC8872485 DOI: 10.3390/gels8020122] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/02/2022] [Accepted: 02/09/2022] [Indexed: 02/04/2023] Open
Abstract
Inert hydrogels are of a great importance in burn first aid. Hydrogel dressings may be an alternative to cooling burn wounds with streaming water, especially in cases of mass casualty events, lack of clean water, hypothermia, or large extent of burns. Hydrogels that contain mostly water evacuate the heat cumulating in the skin by evaporation. They not only cool the burn wound, but also reduce pain and protect the wound area from contamination and further injuries. Hydrogels are ideally used during the first hours after injury, but as they do not have antimicrobial properties per se, they might not prevent wound infection. The hydrogel matrix enables incorporating active substances into the dressing. The active forms may contain ammonium salts, nanocrystal silver, zinc, growth factor, cytokines, or cells, as well as natural agents, such as honey or herbs. Active dressings may have antimicrobial activity or stimulate wound healing. Numerous experiments on animal models proved their safety and efficiency. Hydrogels are a new dressing type that are still in development.
Collapse
|
9
|
Wang Y, Li M, Wang S, Tao Y, Wang X. S
‐Carboxyanhydrides: Ultrafast and Selective Ring‐Opening Polymerizations Towards Well‐defined Functionalized Polythioesters. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202016228] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Yanchao Wang
- Key Laboratory of Polymer Ecomaterials Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 P. R. China
- University of Science and Technology of China Hefei 230026 P. R. China
| | - Maosheng Li
- Key Laboratory of Polymer Ecomaterials Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 P. R. China
| | - Shixue Wang
- Key Laboratory of Polymer Ecomaterials Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 P. R. China
| | - Youhua Tao
- Key Laboratory of Polymer Ecomaterials Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 P. R. China
- University of Science and Technology of China Hefei 230026 P. R. China
| | - Xianhong Wang
- Key Laboratory of Polymer Ecomaterials Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 P. R. China
| |
Collapse
|
10
|
Wang Y, Li M, Wang S, Tao Y, Wang X. S-Carboxyanhydrides: Ultrafast and Selective Ring-Opening Polymerizations Towards Well-defined Functionalized Polythioesters. Angew Chem Int Ed Engl 2021; 60:10798-10805. [PMID: 33605001 DOI: 10.1002/anie.202016228] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Indexed: 12/27/2022]
Abstract
Aliphatic polythioesters are popular polymers because of their appealing performance such as metal coordination ability, high refractive indices, and biodegradability. One of the most powerful approaches for generating these polymers is the ring-opening polymerization (ROP) of cyclic monomers. However, the synthesis of precisely controlled polythioesters via ROP of thiolactones still faces formidable challenges, including the minimal functional diversity of available thiolactone monomers, as well as inevitable transthioesterification side reactions. Here we introduce a hyperactive class of S-carboxyanhydride (SCA) monomers derived from amino acids that are significantly more reactive than thiolactones for ultrafast and selective ROP. Inclusion of the initiator PPNOBz ([PPN]=bis(triphenylphosphine)-iminium) with chain transfer agent benzoic acid, the polymerizations that can be operated in open vessels reach complete conversion within minutes (1-2 min) at room temperature, yielding polythioesters with predictable molecular weight, low dispersities, retained stereoregularity and chemical recyclability. Most fascinating are the functionalized SCAs that allow the incorporating of functional groups along the polythioester chain and thus finely tune their physicochemical performance. Computational studies were carried out to explore the origins of the distinctive rapidity and exquisite selectivity of the polymerizations, offering mechanistic insight and explaining why high polymerizability of SCA monomer is able to facilitate exquisitely selective ring-opening for enchainment over competing transthioesterification and backbiting reactions.
Collapse
Affiliation(s)
- Yanchao Wang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China.,University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Maosheng Li
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| | - Shixue Wang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| | - Youhua Tao
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China.,University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Xianhong Wang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| |
Collapse
|
11
|
Chakma P, Konkolewicz D. Dynamic Covalent Bonds in Polymeric Materials. Angew Chem Int Ed Engl 2019; 58:9682-9695. [PMID: 30624845 DOI: 10.1002/anie.201813525] [Citation(s) in RCA: 361] [Impact Index Per Article: 72.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Indexed: 12/20/2022]
Abstract
Dynamic covalent bonds (DCBs) have received significant attention over the past decade. These are covalent bonds that are capable of exchanging or switching between several molecules. Particular focus has recently been on utilizing these DCBs in polymeric materials. Introduction of DCBs into a polymer material provides it with powerful properties including self-healing, shape-memory properties, increased toughness, and ability to relax stresses as well as to change from one macromolecular architecture to another. This Minireview summarizes commonly used powerful DCBs formed by simple, often "click" reactions, and highlights the powerful materials that can result. Challenges and potential future developments are also discussed.
Collapse
Affiliation(s)
- Progyateg Chakma
- Department of Chemistry and Biochemistry, Miami University, 651 East High Street, Oxford, OH, 45056, USA
| | - Dominik Konkolewicz
- Department of Chemistry and Biochemistry, Miami University, 651 East High Street, Oxford, OH, 45056, USA
| |
Collapse
|
12
|
Affiliation(s)
- Progyateg Chakma
- Department of Chemistry and BiochemistryMiami University 651 East High Street Oxford OH 45056 USA
| | - Dominik Konkolewicz
- Department of Chemistry and BiochemistryMiami University 651 East High Street Oxford OH 45056 USA
| |
Collapse
|
13
|
Lu H, Yuan L, Yu X, Wu C, He D, Deng J. Recent advances of on-demand dissolution of hydrogel dressings. BURNS & TRAUMA 2018; 6:35. [PMID: 30619904 PMCID: PMC6310937 DOI: 10.1186/s41038-018-0138-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 12/11/2018] [Indexed: 01/07/2023]
Abstract
Wound management is a major global challenge and a big financial burden to the healthcare system due to the rapid growth of chronic diseases including the diabetes, obesity, and aging population. Modern solutions to wound management include hydrogels that dissolve on demand, and the development of such hydrogels is of keen research interest. The formation and subsequent on-demand dissolution of hydrogels is of keen interest to scientists and clinicians. These hydrogels have excellent properties such as tissue adhesion, swelling, and water absorption. In addition, these hydrogels have a distinctive capacity to form in situ and dissolve on-demand via physical or chemical reactions. Some of these hydrogels have been successfully used as a dressing to reduce bleeding in hepatic and aortal models, and the hydrogels remove easily afterwards. However, there is an extremely wide array of different ways to synthesize these hydrogels. Therefore, we summarize here the recent advances of hydrogels that dissolve on demand, covering both chemical cross-linking cases and physical cross-linking cases. We believe that continuous exploration of dissolution strategies will uncover new mechanisms of dissolution and extend the range of applications for hydrogel dressings.
Collapse
Affiliation(s)
- Hao Lu
- Department of Dermatology, Chongqing Traditional Chinese Medicine Hospital, Chongqing, 400021 China
| | - Long Yuan
- Department of Breast Surgery, Southwest Hospital, Third Military Medical University (Army Medial University), Chongqing, 400038 China
| | - Xunzhou Yu
- Institute of Burn Research, South-West Hospital, State Key Lab of Trauma, Burn and Combined Injury, Third Military Medical University (Army Medical University), Gaotanyan Road No. 30, Shapingba District, Chongqing, 400038 China
| | - Chengzhou Wu
- Department of Respiratory, Wuxi Country People’s Hospital, Chongqing, 405800 China
| | - Danfeng He
- Institute of Burn Research, South-West Hospital, State Key Lab of Trauma, Burn and Combined Injury, Third Military Medical University (Army Medical University), Gaotanyan Road No. 30, Shapingba District, Chongqing, 400038 China
| | - Jun Deng
- Institute of Burn Research, South-West Hospital, State Key Lab of Trauma, Burn and Combined Injury, Third Military Medical University (Army Medical University), Gaotanyan Road No. 30, Shapingba District, Chongqing, 400038 China
| |
Collapse
|
14
|
Olaru AM, Marin L, Morariu S, Pricope G, Pinteala M, Tartau-Mititelu L. Biocompatible chitosan based hydrogels for potential application in local tumour therapy. Carbohydr Polym 2018; 179:59-70. [DOI: 10.1016/j.carbpol.2017.09.066] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 09/04/2017] [Accepted: 09/21/2017] [Indexed: 01/02/2023]
|
15
|
López C, Ximenis M, Orvay F, Rotger C, Costa A. Supramolecular Hydrogels Based on Minimalist Amphiphilic Squaramide-Squaramates for Controlled Release of Zwitterionic Biomolecules. Chemistry 2017; 23:7590-7594. [DOI: 10.1002/chem.201701029] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Indexed: 01/17/2023]
Affiliation(s)
- Carlos López
- Departament de Química, Facultad de Ciències; Universitat de les Illes Balears; Ctra. Valldemossa, Km. 7.5 Palma 07122 Spain
| | - Marta Ximenis
- Departament de Química, Facultad de Ciències; Universitat de les Illes Balears; Ctra. Valldemossa, Km. 7.5 Palma 07122 Spain
| | - Francisca Orvay
- Departament de Química, Facultad de Ciències; Universitat de les Illes Balears; Ctra. Valldemossa, Km. 7.5 Palma 07122 Spain
| | - Carmen Rotger
- Departament de Química, Facultad de Ciències; Universitat de les Illes Balears; Ctra. Valldemossa, Km. 7.5 Palma 07122 Spain
| | - Antonio Costa
- Departament de Química, Facultad de Ciències; Universitat de les Illes Balears; Ctra. Valldemossa, Km. 7.5 Palma 07122 Spain
| |
Collapse
|