1
|
Li M, Zellermann E, Schmuck C. Formation of Polymeric Particles by Direct Polymerization on the Surface of a Supramolecular Template. Chemistry 2018; 24:9061-9065. [PMID: 29626355 DOI: 10.1002/chem.201705209] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Indexed: 01/05/2023]
Abstract
Formation of polymeric materials on the surface of supramolecular assemblies is rather challenging because of the often weak noncovalent interactions between the self-assembled template and the monomers before polymerization. We herein show that the introduction of a supramolecular anion recognition motif, the guanidiniocarbonyl pyrrole cation (GCP), into a short Fmoc-dipeptide 1 leads to self-assembled spherical nanoparticles in aqueous solution. Negatively charged diacetylene monomers can be attached onto the surface of these nanoparticles, which, after UV polymerization, leads to the formation of a polymer shell around the self-assembled template. The hybrid supramolecular and polymeric nanoparticles demonstrate intriguing thermal hysteresis phenomena. The template nanoparticles could be disassembled upon treatment with organic base, which cleaved the Fmoc moiety on 1. This strategy thus showed that a supramolecular anion recognition motif allows the post-assembly formation of polymeric nanomaterials from anionic monomers around a cationic self-assembled template.
Collapse
Affiliation(s)
- Mao Li
- Institute for Organic Chemistry, University of Duisburg-Essen, 45141, Essen, Germany
| | - Elio Zellermann
- Institute for Organic Chemistry, University of Duisburg-Essen, 45141, Essen, Germany
| | - Carsten Schmuck
- Institute for Organic Chemistry, University of Duisburg-Essen, 45141, Essen, Germany
| |
Collapse
|
2
|
Hu XY, Ehlers M, Wang T, Zellermann E, Mosel S, Jiang H, Ostwaldt JE, Knauer SK, Wang L, Schmuck C. Formation of Twisted β-Sheet Tapes from a Self-Complementary Peptide Based on Novel Pillararene-GCP Host-Guest Interaction with Gene Transfection Properties. Chemistry 2018; 24:9754-9759. [PMID: 29770977 DOI: 10.1002/chem.201801315] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 05/15/2018] [Indexed: 11/12/2022]
Abstract
Small peptides capable of assembling into well-defined nanostructures have attracted extensive attention due to their interesting applications as biomaterials. This work reports the first example of a pillararene functionalized with a guanidiniocarbonyl pyrrole (GCP)-conjugated short peptide segment. The obtained amphiphilic peptide 1 spontaneously self-assembles into a supramolecular β-sheet in aqueous solution based on host-guest interaction between pillararene and GCP unit as well as hydrogen-bonding between the peptide strands. Interestingly, peptide 1 at low concentration shows transitions from small particles to "pearl necklace" assemblies, and finally to branched fibers in a time-dependent process. At higher concentration, it directly assembles into twisted β-sheet tapes. Notably, without pillararene moiety, the control peptide A forms α-helix structure with morphology changing from particles to bamboo-like assemblies depending on concentration, indicating a significant role of the pillararene-GCP host-guest interaction for the secondary structure formation. Moreover, peptide 1 can serve as an efficient gene transfection vector.
Collapse
Affiliation(s)
- Xiao-Yu Hu
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.,Applied Chemistry Department, School of Material Science & Engineering, Nanjing University of Aeronautics & Astronautics, Nanjing, 210016, China.,Institute for Organic Chemistry, University of Duisburg-Essen, 45117, Essen, Germany
| | - Martin Ehlers
- Institute for Organic Chemistry, University of Duisburg-Essen, 45117, Essen, Germany
| | - Tingting Wang
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Elio Zellermann
- Institute for Organic Chemistry, University of Duisburg-Essen, 45117, Essen, Germany
| | - Stefanie Mosel
- Institute for Biology, University of Duisburg-Essen, 45117, Essen, Germany
| | - Hao Jiang
- Institute for Organic Chemistry, University of Duisburg-Essen, 45117, Essen, Germany
| | - Jan-Erik Ostwaldt
- Institute for Organic Chemistry, University of Duisburg-Essen, 45117, Essen, Germany
| | - Shirley K Knauer
- Institute for Biology, University of Duisburg-Essen, 45117, Essen, Germany
| | - Leyong Wang
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Carsten Schmuck
- Institute for Organic Chemistry, University of Duisburg-Essen, 45117, Essen, Germany
| |
Collapse
|
3
|
Li X, Fei J, Xu Y, Li D, Yuan T, Li G, Wang C, Li J. A Photoinduced Reversible Phase Transition in a Dipeptide Supramolecular Assembly. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201711547] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Xianbao Li
- Beijing National Laboratory for Molecular Sciences (BNLMS); CAS Key Lab of Colloid; Interface and Chemical Thermodynamics; Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 China
- University of Chinese Academy of Sciences; Beijing 100049 China
| | - Jinbo Fei
- Beijing National Laboratory for Molecular Sciences (BNLMS); CAS Key Lab of Colloid; Interface and Chemical Thermodynamics; Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 China
| | - Youqian Xu
- Beijing National Laboratory for Molecular Sciences (BNLMS); CAS Key Lab of Colloid; Interface and Chemical Thermodynamics; Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 China
- University of Chinese Academy of Sciences; Beijing 100049 China
| | - Dongxiang Li
- College of Chemistry and Molecular Engineering; Qingdao University of Science and Technology; Qingdao 260042 China
| | - Tingting Yuan
- Beijing National Laboratory for Molecular Sciences (BNLMS); CAS Key Lab of Colloid; Interface and Chemical Thermodynamics; Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 China
- University of Chinese Academy of Sciences; Beijing 100049 China
| | - Guangle Li
- Beijing National Laboratory for Molecular Sciences (BNLMS); CAS Key Lab of Colloid; Interface and Chemical Thermodynamics; Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 China
- University of Chinese Academy of Sciences; Beijing 100049 China
| | - Chenlei Wang
- Beijing National Laboratory for Molecular Sciences (BNLMS); CAS Key Lab of Colloid; Interface and Chemical Thermodynamics; Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 China
- University of Chinese Academy of Sciences; Beijing 100049 China
| | - Junbai Li
- Beijing National Laboratory for Molecular Sciences (BNLMS); CAS Key Lab of Colloid; Interface and Chemical Thermodynamics; Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 China
- University of Chinese Academy of Sciences; Beijing 100049 China
| |
Collapse
|
4
|
Li X, Fei J, Xu Y, Li D, Yuan T, Li G, Wang C, Li J. A Photoinduced Reversible Phase Transition in a Dipeptide Supramolecular Assembly. Angew Chem Int Ed Engl 2018; 57:1903-1907. [PMID: 29280315 DOI: 10.1002/anie.201711547] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Indexed: 12/31/2022]
Abstract
Tunable supramolecular assembly has found various applications in biomedicine, molecular catalysis, optoelectronics, and nanofabrication. Unlike traditional covalent conjugation, non-covalent introduction of a photoswitchable moiety enables reversible photomodulation of non-photosensitive dipeptide supramolecular assembly. Under light illumination, a long-lived photoacid generator releases a proton and mediates the dissociation of dipeptide-based organogel, thereby resulting in sol formation. Under darkness, the photoswitchable moiety entraps a proton, resulting in gel regeneration. Furthermore, accompanying the isothermal recycled gel-sol transition in a spatially controlled manner, renewable patterns are spontaneously fabricated. This new concept of light-controlled phase transition of amino acid-based supramolecular assemblies will open up the possibility of wide applications.
Collapse
Affiliation(s)
- Xianbao Li
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jinbo Fei
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Youqian Xu
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Dongxiang Li
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 260042, China
| | - Tingting Yuan
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guangle Li
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chenlei Wang
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Junbai Li
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
5
|
Xing R, Yuan C, Li S, Song J, Li J, Yan X. Charge-Induced Secondary Structure Transformation of Amyloid-Derived Dipeptide Assemblies from β-Sheet to α-Helix. Angew Chem Int Ed Engl 2018; 57:1537-1542. [DOI: 10.1002/anie.201710642] [Citation(s) in RCA: 159] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Revised: 12/12/2017] [Indexed: 01/09/2023]
Affiliation(s)
- Ruirui Xing
- State Key Laboratory of Biochemical Engineering; Institute of Process Engineering; Chinese Academy of Sciences; 100190 Beijing China
| | - Chengqian Yuan
- State Key Laboratory of Biochemical Engineering; Institute of Process Engineering; Chinese Academy of Sciences; 100190 Beijing China
- Center for Mesoscience; Institute of Process Engineering; Chinese Academy of Sciences; 100190 Beijing China
| | - Shukun Li
- State Key Laboratory of Biochemical Engineering; Institute of Process Engineering; Chinese Academy of Sciences; 100190 Beijing China
- University of Chinese Academy of Sciences; 100049 Beijing China
| | - Jingwen Song
- State Key Laboratory of Biochemical Engineering; Institute of Process Engineering; Chinese Academy of Sciences; 100190 Beijing China
| | - Junbai Li
- Key Laboratory of Colloid and Interface Science, Center for Molecular Sciences; Institute of Chemistry; Chinese Academy of Sciences; 100190 Beijing China
| | - Xuehai Yan
- State Key Laboratory of Biochemical Engineering; Institute of Process Engineering; Chinese Academy of Sciences; 100190 Beijing China
- Center for Mesoscience; Institute of Process Engineering; Chinese Academy of Sciences; 100190 Beijing China
- University of Chinese Academy of Sciences; 100049 Beijing China
| |
Collapse
|
6
|
Xing R, Yuan C, Li S, Song J, Li J, Yan X. Charge-Induced Secondary Structure Transformation of Amyloid-Derived Dipeptide Assemblies from β-Sheet to α-Helix. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201710642] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Ruirui Xing
- State Key Laboratory of Biochemical Engineering; Institute of Process Engineering; Chinese Academy of Sciences; 100190 Beijing China
| | - Chengqian Yuan
- State Key Laboratory of Biochemical Engineering; Institute of Process Engineering; Chinese Academy of Sciences; 100190 Beijing China
- Center for Mesoscience; Institute of Process Engineering; Chinese Academy of Sciences; 100190 Beijing China
| | - Shukun Li
- State Key Laboratory of Biochemical Engineering; Institute of Process Engineering; Chinese Academy of Sciences; 100190 Beijing China
- University of Chinese Academy of Sciences; 100049 Beijing China
| | - Jingwen Song
- State Key Laboratory of Biochemical Engineering; Institute of Process Engineering; Chinese Academy of Sciences; 100190 Beijing China
| | - Junbai Li
- Key Laboratory of Colloid and Interface Science, Center for Molecular Sciences; Institute of Chemistry; Chinese Academy of Sciences; 100190 Beijing China
| | - Xuehai Yan
- State Key Laboratory of Biochemical Engineering; Institute of Process Engineering; Chinese Academy of Sciences; 100190 Beijing China
- Center for Mesoscience; Institute of Process Engineering; Chinese Academy of Sciences; 100190 Beijing China
- University of Chinese Academy of Sciences; 100049 Beijing China
| |
Collapse
|
7
|
Liu X, Fei J, Wang A, Cui W, Zhu P, Li J. Transformation of Dipeptide-Based Organogels into Chiral Crystals by Cryogenic Treatment. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201612024] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Xingcen Liu
- Beijing National Laboratory for Molecular Sciences (BNLMS); CAS Key Lab of Colloid, Interface and Chemical Thermodynamics; Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 China
- University of Chinese Academy of Sciences; Beijing 100049 China
| | - Jinbo Fei
- Beijing National Laboratory for Molecular Sciences (BNLMS); CAS Key Lab of Colloid, Interface and Chemical Thermodynamics; Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 China
| | - Anhe Wang
- State Key Laboratory of Biochemical Engineering; Institute of Process Engineering; Chinese Academy of Sciences; Beijing 100190 China
| | - Wei Cui
- Beijing National Laboratory for Molecular Sciences (BNLMS); CAS Key Lab of Colloid, Interface and Chemical Thermodynamics; Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 China
| | - Pengli Zhu
- Shenzhen Institutes of Advanced Technology; Chinese Academy of Sciences; Shenzhen 518055 China
| | - Junbai Li
- Beijing National Laboratory for Molecular Sciences (BNLMS); CAS Key Lab of Colloid, Interface and Chemical Thermodynamics; Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 China
- University of Chinese Academy of Sciences; Beijing 100049 China
| |
Collapse
|
8
|
Liu X, Fei J, Wang A, Cui W, Zhu P, Li J. Transformation of Dipeptide-Based Organogels into Chiral Crystals by Cryogenic Treatment. Angew Chem Int Ed Engl 2017; 56:2660-2663. [PMID: 28140492 DOI: 10.1002/anie.201612024] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Indexed: 12/22/2022]
Abstract
Controlled molecular assembly is an important approach for the synthesis of single-component materials with diverse functions. Unlike traditional heat treatment or solvent modulation, cryogenic treatment at 77 K enabled the tunable transition of a self-assembled diphenylalanine organogel into a hexagonal crystal. Under these conditions, the assembled molecules undergo an internal rearrangement in the solid state to form a well-defined chiral crystal structure. Moreover, these assemblies exhibit enhanced emission. This strategy for the synthesis of single-component supramolecular assemblies can create new functions by manipulating phase transitions.
Collapse
Affiliation(s)
- Xingcen Liu
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jinbo Fei
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Anhe Wang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Wei Cui
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Pengli Zhu
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Junbai Li
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|