1
|
Yang YF, Cederbaum LS. On the Endocircular Li@C16 System. Front Chem 2022; 10:813563. [PMID: 35186881 PMCID: PMC8854773 DOI: 10.3389/fchem.2022.813563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 01/10/2022] [Indexed: 11/26/2022] Open
Abstract
The endocircular Li@C16 is a promising system as it can form both a charge-separated donor-acceptor complex and a non-charge-separated van der waals complex. By employing the state-of-the-art equation-of-motion coupled-cluster method, our study shows that the carbon ring of this system possesses high flexibility and may undertake large distortions. Due to the intricate interaction between the guest Li+ cation and the negatively charged ring, this system can form several isomers possessing different ground states. The interesting electronic structure properties indicate its applicability as a catalyst candidate in the future.
Collapse
Affiliation(s)
- Yi-Fan Yang
- Theoretical Chemistry, Institute of Physical Chemistry, University of Heidelberg, Heidelberg, Germany
| | - Lorenz S Cederbaum
- Theoretical Chemistry, Institute of Physical Chemistry, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
2
|
Martín-Gomis L, Seetharaman S, Herrero D, Karr PA, Fernández-Lázaro F, D'Souza F, Sastre-Santos Á. Distance-Dependent Electron Transfer Kinetics in Axially Connected Silicon Phthalocyanine-Fullerene Conjugates. Chemphyschem 2020; 21:2254-2262. [PMID: 33448590 DOI: 10.1002/cphc.202000578] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 07/29/2020] [Indexed: 02/06/2023]
Abstract
The effect of donor-acceptor distance in controlling the rate of electron transfer in axially linked silicon phthalocyanine-C60 dyads has been investigated. For this, two C60-SiPc-C60 dyads, 1 and 2, varying in their donor-acceptor distance, have been newly synthesized and characterized. In the case of C60-SiPc-C60 1 where the SiPc and C60 are separated by a phenyl spacer, faster electron transfer was observed with kcs equal to 2.7×109 s-1 in benzonitrile. However, in the case of C60-SiPc-C60 2, where SiPc and C60 are separated by a biphenyl spacer, a slower electron transfer rate constant, kcs=9.1×108 s-1, was recorded. The addition of an extra phenyl spacer in 2 increased the donor-acceptor distance by ∼4.3 Å, and consequently, slowed down the electron transfer rate constant by a factor of ∼3.7. The charge separated state lasted over 3 ns, monitoring time window of our femtosecond transient spectrometer. Complimentary nanosecond transient absorption studies revealed formation of 3SiPc* as the end product and suggested the final lifetime of the charge separated state to be in the 3-20 ns range. Energy level diagrams established to comprehend these mechanistic details indicated that the comparatively high-energy SiPc.+-C60 .- charge separated states (1.57 eV) populated the low-lying 3SiPc* (1.26 eV) prior returning to the ground state.
Collapse
Affiliation(s)
- Luis Martín-Gomis
- División de Química Orgánica, Instituto de Bioingeniería, Universidad Miguel Hernández, Avda. de la Universidad s/n, 03203, Elche, Spain
| | - Sairaman Seetharaman
- Department of Chemistry, University of North Texas at Denton, 1155 Union Circle, #305070, Denton, TX 76203-5017, USA
| | - David Herrero
- División de Química Orgánica, Instituto de Bioingeniería, Universidad Miguel Hernández, Avda. de la Universidad s/n, 03203, Elche, Spain
| | - Paul A Karr
- Department of Physical Sciences and Mathematics, Wayne State College, 1111 Main Street, Wayne, Nebraska 68787, USA
| | - Fernando Fernández-Lázaro
- División de Química Orgánica, Instituto de Bioingeniería, Universidad Miguel Hernández, Avda. de la Universidad s/n, 03203, Elche, Spain
| | - Francis D'Souza
- Department of Chemistry, University of North Texas at Denton, 1155 Union Circle, #305070, Denton, TX 76203-5017, USA
| | - Ángela Sastre-Santos
- División de Química Orgánica, Instituto de Bioingeniería, Universidad Miguel Hernández, Avda. de la Universidad s/n, 03203, Elche, Spain
| |
Collapse
|
3
|
Liu D, El-Zohry AM, Taddei M, Matt C, Bussotti L, Wang Z, Zhao J, Mohammed OF, Di Donato M, Weber S. Long-Lived Charge-Transfer State Induced by Spin-Orbit Charge Transfer Intersystem Crossing (SOCT-ISC) in a Compact Spiro Electron Donor/Acceptor Dyad. Angew Chem Int Ed Engl 2020; 59:11591-11599. [PMID: 32270586 PMCID: PMC7496792 DOI: 10.1002/anie.202003560] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Indexed: 11/13/2022]
Abstract
We prepared conceptually novel, fully rigid, spiro compact electron donor (Rhodamine B, lactam form, RB)/acceptor (naphthalimide; NI) orthogonal dyad to attain the long‐lived triplet charge‐transfer (3CT) state, based on the electron spin control using spin‐orbit charge transfer intersystem crossing (SOCT‐ISC). Transient absorption (TA) spectra indicate the first charge separation (CS) takes place within 2.5 ps, subsequent SOCT‐ISC takes 8 ns to produce the 3NI* state. Then the slow secondary CS (125 ns) gives the long‐lived 3CT state (0.94 μs in deaerated n‐hexane) with high energy level (ca. 2.12 eV). The cascade photophysical processes of the dyad upon photoexcitation are summarized as 1NI*→1CT→3NI*→3CT. With time‐resolved electron paramagnetic resonance (TREPR) spectra, an EEEAAA electron‐spin polarization pattern was observed for the naphthalimide‐localized triplet state. Our spiro compact dyad structure and the electron spin‐control approach is different to previous methods for which invoking transition‐metal coordination or chromophores with intrinsic ISC ability is mandatory.
Collapse
Affiliation(s)
- Dongyi Liu
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, 2 Ling Gong Road, Dalian, 116024, China
| | - Ahmed M El-Zohry
- Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Maria Taddei
- LENS (European Laboratory for Non-Linear Spectroscopy), via N. Carrara 1, 50019, Sesto Fiorentino (FI), Italy
| | - Clemens Matt
- Institute of Physical Chemistry, Albert-Ludwigs-Universität Freiburg, Albertstrasse 21, 79104, Freiburg, Germany
| | - Laura Bussotti
- LENS (European Laboratory for Non-Linear Spectroscopy), via N. Carrara 1, 50019, Sesto Fiorentino (FI), Italy
| | - Zhijia Wang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, 2 Ling Gong Road, Dalian, 116024, China
| | - Jianzhang Zhao
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, 2 Ling Gong Road, Dalian, 116024, China
| | - Omar F Mohammed
- Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Mariangela Di Donato
- LENS (European Laboratory for Non-Linear Spectroscopy), via N. Carrara 1, 50019, Sesto Fiorentino (FI), Italy.,ICCOM-CNR, via Madonna del Piano 10, 50019, Sesto Fiorentino (FI), Italy
| | - Stefan Weber
- Institute of Physical Chemistry, Albert-Ludwigs-Universität Freiburg, Albertstrasse 21, 79104, Freiburg, Germany
| |
Collapse
|
4
|
Liu D, El‐Zohry AM, Taddei M, Matt C, Bussotti L, Wang Z, Zhao J, Mohammed OF, Di Donato M, Weber S. Long‐Lived Charge‐Transfer State Induced by Spin‐Orbit Charge Transfer Intersystem Crossing (SOCT‐ISC) in a Compact Spiro Electron Donor/Acceptor Dyad. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202003560] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Dongyi Liu
- State Key Laboratory of Fine Chemicals School of Chemical Engineering Dalian University of Technology 2 Ling Gong Road Dalian 116024 China
| | - Ahmed M. El‐Zohry
- Division of Physical Sciences and Engineering King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Kingdom of Saudi Arabia
| | - Maria Taddei
- LENS (European Laboratory for Non-Linear Spectroscopy) via N. Carrara 1 50019 Sesto Fiorentino (FI) Italy
| | - Clemens Matt
- Institute of Physical Chemistry Albert-Ludwigs-Universität Freiburg Albertstrasse 21 79104 Freiburg Germany
| | - Laura Bussotti
- LENS (European Laboratory for Non-Linear Spectroscopy) via N. Carrara 1 50019 Sesto Fiorentino (FI) Italy
| | - Zhijia Wang
- State Key Laboratory of Fine Chemicals School of Chemical Engineering Dalian University of Technology 2 Ling Gong Road Dalian 116024 China
| | - Jianzhang Zhao
- State Key Laboratory of Fine Chemicals School of Chemical Engineering Dalian University of Technology 2 Ling Gong Road Dalian 116024 China
| | - Omar F. Mohammed
- Division of Physical Sciences and Engineering King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Kingdom of Saudi Arabia
| | - Mariangela Di Donato
- LENS (European Laboratory for Non-Linear Spectroscopy) via N. Carrara 1 50019 Sesto Fiorentino (FI) Italy
- ICCOM-CNR via Madonna del Piano 10 50019 Sesto Fiorentino (FI) Italy
| | - Stefan Weber
- Institute of Physical Chemistry Albert-Ludwigs-Universität Freiburg Albertstrasse 21 79104 Freiburg Germany
| |
Collapse
|
5
|
Castrogiovanni A, Herr P, Larsen CB, Guo X, Sparr C, Wenger OS. Shortcuts for Electron-Transfer through the Secondary Structure of Helical Oligo-1,2-Naphthylenes. Chemistry 2019; 25:16748-16754. [PMID: 31674695 DOI: 10.1002/chem.201904771] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 10/30/2019] [Indexed: 01/24/2023]
Abstract
Atropisomeric 1,2-naphthylene scaffolds provide access to donor-acceptor compounds with helical oligomer-based bridges, and transient absorption studies revealed a highly unusual dependence of the electron-transfer rate on oligomer length, which is due to their well-defined secondary structure. Close noncovalent intramolecular contacts enable shortcuts for electron transfer that would otherwise have to occur over longer distances along covalent pathways, reminiscent of the behavior seen for certain proteins. The simplistic picture of tube-like electron transfer can describe this superposition of different pathways including both the covalent helical backbone, as well as noncovalent contacts, contrasting the wire-like behavior reported many times before for more conventional molecular bridges. The exquisite control over the molecular architecture, achievable with the configurationally stable and topologically defined 1,2-naphthylene-based scaffolds, is of key importance for the tube-like electron transfer behavior. Our insights are relevant for the emerging field of multidimensional electron transfer and for possible future applications in molecular electronics.
Collapse
Affiliation(s)
| | - Patrick Herr
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056, Basel, Switzerland
| | - Christopher B Larsen
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056, Basel, Switzerland
| | - Xingwei Guo
- Current address: Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing, 100084, P.R. China
| | - Christof Sparr
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056, Basel, Switzerland
| | - Oliver S Wenger
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056, Basel, Switzerland
| |
Collapse
|
6
|
|
7
|
Preiß S, Päpcke A, Burkhardt L, Großmann L, Lochbrunner S, Bauer M, Opatz T, Heinze K. Gold(II) Porphyrins in Photoinduced Electron Transfer Reactions. Chemistry 2019; 25:5940-5949. [DOI: 10.1002/chem.201900050] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Indexed: 11/06/2022]
Affiliation(s)
- Sebastian Preiß
- Institute of Inorganic Chemistry and Analytical ChemistryJohannes Gutenberg University Mainz Duesbergweg 10–14 55128 Mainz Germany
| | - Ayla Päpcke
- Institute of Physics and Department of Life, Light, and MatterUniversity of Rostock Albert-Einstein-Straße 23-24 18059 Rostock Germany
| | - Lukas Burkhardt
- Department Chemie and Center for Sustainable Systems Design (CSSD)Paderborn University Warburger Strasse 100 33098 Paderborn Germany
| | - Luca Großmann
- Institute of Organic ChemistryJohannes Gutenberg University Mainz Duesbergweg 10–14 55128 Mainz Germany
| | - Stefan Lochbrunner
- Institute of Physics and Department of Life, Light, and MatterUniversity of Rostock Albert-Einstein-Straße 23-24 18059 Rostock Germany
| | - Matthias Bauer
- Department Chemie and Center for Sustainable Systems Design (CSSD)Paderborn University Warburger Strasse 100 33098 Paderborn Germany
| | - Till Opatz
- Institute of Organic ChemistryJohannes Gutenberg University Mainz Duesbergweg 10–14 55128 Mainz Germany
| | - Katja Heinze
- Institute of Inorganic Chemistry and Analytical ChemistryJohannes Gutenberg University Mainz Duesbergweg 10–14 55128 Mainz Germany
| |
Collapse
|
8
|
Xu Y, Wang B, Kaur R, Minameyer MB, Bothe M, Drewello T, Guldi DM, von Delius M. A Supramolecular [10]CPP Junction Enables Efficient Electron Transfer in Modular Porphyrin–[10]CPP⊃Fullerene Complexes. Angew Chem Int Ed Engl 2018; 57:11549-11553. [DOI: 10.1002/anie.201802443] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Revised: 05/10/2018] [Indexed: 11/08/2022]
Affiliation(s)
- Youzhi Xu
- Institute of Organic Chemistry and Advanced MaterialsUniversity of Ulm Albert-Einstein-Allee 11 89081 Ulm Germany
| | - Bingzhe Wang
- Department of Chemistry and Pharmacy & Interdisciplinary Center for Molecular MaterialsFriedrich-Alexander University Erlangen-Nürnberg Egerlandstrasse 3 91058 Erlangen Germany
| | - Ramandeep Kaur
- Department of Chemistry and Pharmacy & Interdisciplinary Center for Molecular MaterialsFriedrich-Alexander University Erlangen-Nürnberg Egerlandstrasse 3 91058 Erlangen Germany
| | - Martin B. Minameyer
- Department of Chemistry and Pharmacy & Interdisciplinary Center for Molecular MaterialsFriedrich-Alexander University Erlangen-Nürnberg Egerlandstrasse 3 91058 Erlangen Germany
| | - Michael Bothe
- Institute of Organic Chemistry and Advanced MaterialsUniversity of Ulm Albert-Einstein-Allee 11 89081 Ulm Germany
| | - Thomas Drewello
- Department of Chemistry and Pharmacy & Interdisciplinary Center for Molecular MaterialsFriedrich-Alexander University Erlangen-Nürnberg Egerlandstrasse 3 91058 Erlangen Germany
| | - Dirk M. Guldi
- Department of Chemistry and Pharmacy & Interdisciplinary Center for Molecular MaterialsFriedrich-Alexander University Erlangen-Nürnberg Egerlandstrasse 3 91058 Erlangen Germany
| | - Max von Delius
- Institute of Organic Chemistry and Advanced MaterialsUniversity of Ulm Albert-Einstein-Allee 11 89081 Ulm Germany
| |
Collapse
|
9
|
Xu Y, Wang B, Kaur R, Minameyer MB, Bothe M, Drewello T, Guldi DM, von Delius M. A Supramolecular [10]CPP Junction Enables Efficient Electron Transfer in Modular Porphyrin-[10]CPP⊃Fullerene Complexes. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201802443] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Youzhi Xu
- Institute of Organic Chemistry and Advanced Materials; University of Ulm; Albert-Einstein-Allee 11 89081 Ulm Germany
| | - Bingzhe Wang
- Department of Chemistry and Pharmacy & Interdisciplinary Center for Molecular Materials; Friedrich-Alexander University Erlangen-Nürnberg; Egerlandstrasse 3 91058 Erlangen Germany
| | - Ramandeep Kaur
- Department of Chemistry and Pharmacy & Interdisciplinary Center for Molecular Materials; Friedrich-Alexander University Erlangen-Nürnberg; Egerlandstrasse 3 91058 Erlangen Germany
| | - Martin B. Minameyer
- Department of Chemistry and Pharmacy & Interdisciplinary Center for Molecular Materials; Friedrich-Alexander University Erlangen-Nürnberg; Egerlandstrasse 3 91058 Erlangen Germany
| | - Michael Bothe
- Institute of Organic Chemistry and Advanced Materials; University of Ulm; Albert-Einstein-Allee 11 89081 Ulm Germany
| | - Thomas Drewello
- Department of Chemistry and Pharmacy & Interdisciplinary Center for Molecular Materials; Friedrich-Alexander University Erlangen-Nürnberg; Egerlandstrasse 3 91058 Erlangen Germany
| | - Dirk M. Guldi
- Department of Chemistry and Pharmacy & Interdisciplinary Center for Molecular Materials; Friedrich-Alexander University Erlangen-Nürnberg; Egerlandstrasse 3 91058 Erlangen Germany
| | - Max von Delius
- Institute of Organic Chemistry and Advanced Materials; University of Ulm; Albert-Einstein-Allee 11 89081 Ulm Germany
| |
Collapse
|
10
|
Schmidt HC, Larsen CB, Wenger OS. Electron Transfer around a Molecular Corner. Angew Chem Int Ed Engl 2018; 57:6696-6700. [DOI: 10.1002/anie.201800396] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 02/02/2018] [Indexed: 11/11/2022]
Affiliation(s)
- Hauke C. Schmidt
- Department of ChemistryUniversity of Basel St. Johanns-Ring 19 4056 Basel Switzerland
| | - Christopher B. Larsen
- Department of ChemistryUniversity of Basel St. Johanns-Ring 19 4056 Basel Switzerland
| | - Oliver S. Wenger
- Department of ChemistryUniversity of Basel St. Johanns-Ring 19 4056 Basel Switzerland
| |
Collapse
|
11
|
Affiliation(s)
- Hauke C. Schmidt
- Departement ChemieUniversität Basel St. Johanns-Ring 19 4056 Basel Schweiz
| | | | - Oliver S. Wenger
- Departement ChemieUniversität Basel St. Johanns-Ring 19 4056 Basel Schweiz
| |
Collapse
|
12
|
Lauck M, Förster C, Gehrig D, Heinze K. Cobaltocenium substituents as electron acceptors in photosynthetic model dyads. J Organomet Chem 2017. [DOI: 10.1016/j.jorganchem.2017.02.026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|