1
|
Wan C, Feng Y, Hou Z, Lian C, Zhang L, An Y, Sun J, Yang D, Jiang C, Yin F, Wang R, Li Z. Electrophilic Sulfonium-Promoted Peptide and Protein Amidation in Aqueous Media. Org Lett 2021; 24:581-586. [PMID: 34968069 DOI: 10.1021/acs.orglett.1c04017] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A novel amidation strategy using electrophilic sulfonium, which is soluble and stable in aqueous conditions, was developed. The sulfoniums could activate thioacid and carboxyl acid to efficiently react with amines to afford amides. This method enables applications in amidation in both aqueous media and solid-phase peptide synthesis, peptide/protein modifications, and reactive lysines of a proteome at pH 10 with activity-based protein profiling. A peptide ligand-directed labeling of the USP7-UBL2 domain was also performed using this method.
Collapse
Affiliation(s)
- Chuan Wan
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, P. R. China
| | - Yuan Feng
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, P. R. China
| | - Zhanfeng Hou
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen 518118, P. R. China
| | - Chenshan Lian
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen 518118, P. R. China
| | - Liang Zhang
- Key Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institute of City University of Hong Kong, Shenzhen 518057, China.,Department of Biomedical Sciences, College of Veterinary Medicine and Life Sciences, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Yuhao An
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen 518118, P. R. China
| | - Jinming Sun
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, P. R. China
| | - Dongyan Yang
- College of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, P. R. China
| | - Chenran Jiang
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen 518118, P. R. China
| | - Feng Yin
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen 518118, P. R. China
| | - Rui Wang
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen 518118, P. R. China
| | - Zigang Li
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, P. R. China.,Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen 518118, P. R. China
| |
Collapse
|
2
|
Corbett KM, Ford L, Warren DB, Pouton CW, Chalmers DK. Cyclosporin Structure and Permeability: From A to Z and Beyond. J Med Chem 2021; 64:13131-13151. [PMID: 34478303 DOI: 10.1021/acs.jmedchem.1c00580] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cyclosporins are natural or synthetic undecapeptides with a wide range of actual and potential pharmaceutical applications. Several members of the cyclosporin compound family have remarkably high passive membrane permeabilities that are not well-described by simple structural metrics. Here we review experimental studies of cyclosporin structure and permeability, including cyclosporin-metal complexes. We also discuss models for the conformation-dependent permeability of cyclosporins and similar compounds. Finally, we identify current knowledge gaps in the literature and provide recommendations regarding future avenues of exploration.
Collapse
Affiliation(s)
- Karen M Corbett
- Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Leigh Ford
- Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Dallas B Warren
- Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Colin W Pouton
- Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - David K Chalmers
- Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| |
Collapse
|
3
|
Corbett KM, Pouton CW, Chalmers DK. Temperature Replica Exchange Molecular Dynamics Simulations of Cyclic Peptide Conformation. Aust J Chem 2021. [DOI: 10.1071/ch21120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
4
|
Chen J, Sun S, Zhao R, Xi C, Qiu W, Wang N, Wang Y, Bierer D, Shi J, Li Y. Chemical Synthesis of Six‐Atom Thioether Bridged Diaminodiacid for Solid‐Phase Synthesis of Peptide Disulfide Bond Mimics. ChemistrySelect 2020. [DOI: 10.1002/slct.201904042] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Junyou Chen
- School of Food and Biological EngineeringHefei University of Technology Hefei 230009 China
| | - Shuaishuai Sun
- School of Food and Biological EngineeringHefei University of Technology Hefei 230009 China
| | - Rui Zhao
- Department of ChemistryUniversity of Science and Techmology of China Hefei 230026 China
| | - Chen‐Peng Xi
- School of Food and Biological EngineeringHefei University of Technology Hefei 230009 China
| | - Wenjie Qiu
- School of Food and Biological EngineeringHefei University of Technology Hefei 230009 China
| | - Ning Wang
- School of Food and Biological EngineeringHefei University of Technology Hefei 230009 China
| | - Ya Wang
- School of Life ScienceAnhui University Hefei 230601 China
| | - Donald Bierer
- Department of Medicinal ChemistryBayer AG Aprather Weg 18 A 42096 Wuppertal Germany
| | - Jing Shi
- Department of ChemistryUniversity of Science and Techmology of China Hefei 230026 China
| | - Yi‐Ming Li
- School of Food and Biological EngineeringHefei University of Technology Hefei 230009 China
| |
Collapse
|
5
|
Qin X, Zhao H, Jiang Y, Yin F, Tian Y, Xie M, Ye X, Xu N, Li Z. Development of a potent peptide inhibitor of estrogen receptor α. CHINESE CHEM LETT 2018. [DOI: 10.1016/j.cclet.2018.04.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
6
|
Shi X, Jiang Y, Yang D, Zhao H, Tian Y, Li Z. Reversibly switching the conformation of short peptide through in-tether chiral sulfonium auxiliary. CHINESE CHEM LETT 2018. [DOI: 10.1016/j.cclet.2017.07.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
7
|
Li W, Hu K, Zhang Q, Wang D, Ma Y, Hou Z, Yin F, Li Z. N terminal N-methylation modulates chiral centre induced helical (CIH) peptides’ biophysical properties. Chem Commun (Camb) 2018; 54:1865-1868. [DOI: 10.1039/c7cc09201f] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The effects of N-methylation on CIH peptides’ biophysical properties were systematically studied.
Collapse
Affiliation(s)
- Wenjun Li
- The Key Laboratory of Chemical Genomics School of Chemical Biology and Biotechnology
- Peking University Shenzhen Graduate School
- Shenzhen
- China
| | - Kuan Hu
- Beijing Institute of Nanoenergy and Nanosystems
- National Center for Nanoscience and Technology (NCNST)
- Chinese Academy of Sciences
- Beijing 100083
- China
| | - Qingzhou Zhang
- The Key Laboratory of Chemical Genomics School of Chemical Biology and Biotechnology
- Peking University Shenzhen Graduate School
- Shenzhen
- China
| | - Dongyuan Wang
- The Key Laboratory of Chemical Genomics School of Chemical Biology and Biotechnology
- Peking University Shenzhen Graduate School
- Shenzhen
- China
| | - Yue Ma
- The Key Laboratory of Chemical Genomics School of Chemical Biology and Biotechnology
- Peking University Shenzhen Graduate School
- Shenzhen
- China
| | - Zhanfeng Hou
- The Key Laboratory of Chemical Genomics School of Chemical Biology and Biotechnology
- Peking University Shenzhen Graduate School
- Shenzhen
- China
| | - Feng Yin
- The Key Laboratory of Chemical Genomics School of Chemical Biology and Biotechnology
- Peking University Shenzhen Graduate School
- Shenzhen
- China
| | - Zigang Li
- The Key Laboratory of Chemical Genomics School of Chemical Biology and Biotechnology
- Peking University Shenzhen Graduate School
- Shenzhen
- China
| |
Collapse
|