1
|
Mondal A, Pal D, Phukan HJ, Roy M, Kumar S, Purkayastha S, Guha AK, Srimani D. Manganese Complex Catalyzed Sequential Multi-component Reaction: Enroute to a Quinoline-Derived Azafluorenes. CHEMSUSCHEM 2024; 17:e202301138. [PMID: 38096176 DOI: 10.1002/cssc.202301138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 11/06/2023] [Indexed: 01/09/2024]
Abstract
The development of innovative synthetic strategies for constructing complex molecular structures is the heart of organic chemistry. This significance of novel reactions or reaction sequences would further enhance if they permitted the synthesis of new classes of structural motifs, which have not been previously created. The research on the synthesis of heterocyclic compounds is one of the most active topics in organic chemistry due to the widespread application of N-heterocycles in life and material science. The development of a new catalytic process that employs first-row transition metals to produce a range of heterocycles from renewable raw materials is considered highly sustainable approach. This would be more advantageous if done in an eco-friendly and atom-efficient manner. Herein we introduce, the synthesis of various new quinoline based azafluorenes via sequential dehydrogenative multicomponent reaction (MCR) followed by C(sp3)-H hydroxylation and annulation. Our newly developed, Mn-complexes have the ability to direct the reaction in order to achieve a high amount of desired functionalized heterocycles while minimizing the possibility of multiple side reactions. We also performed a series of control experiments, hydride trapping experiments, reaction kinetics, catalytic intermediate and DFT studies to comprehend the detailed reaction route and the catalyst's function in the MCR sequence.
Collapse
Affiliation(s)
- Avijit Mondal
- Department of Chemistry, Indian Institute of Technology-Guwahati, Kamrup, Assam, 781039, India
| | - Debjyoti Pal
- Department of Chemistry, Indian Institute of Technology-Guwahati, Kamrup, Assam, 781039, India
| | - Hirak Jyoti Phukan
- Department of Chemistry, Indian Institute of Technology-Guwahati, Kamrup, Assam, 781039, India
| | - Mithu Roy
- Department of Chemistry, Indian Institute of Technology-Guwahati, Kamrup, Assam, 781039, India
| | - Saurabh Kumar
- Department of Chemistry, Indian Institute of Technology-Guwahati, Kamrup, Assam, 781039, India
| | | | - Ankur Kanti Guha
- Advanced Computational Chemistry Centre, Cotton University, Guwahati, 781001, India
| | - Dipankar Srimani
- Department of Chemistry, Indian Institute of Technology-Guwahati, Kamrup, Assam, 781039, India
| |
Collapse
|
2
|
Livesay B, Schmidt JG, Williams RF, Billow BS, Tondreau AM. Reactivity of [(PNP)Mn(CO) 2] with Organophosphates. ACS ORGANIC & INORGANIC AU 2023; 3:199-208. [PMID: 37545657 PMCID: PMC10401673 DOI: 10.1021/acsorginorgau.3c00003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 04/20/2023] [Accepted: 04/24/2023] [Indexed: 08/08/2023]
Abstract
Organophosphorus nerve agents (OPAs) are a toxic class of synthetic compounds that cause adverse effects with many biological systems. Development of methods for environmental remediation and passivation has been ongoing for years. However, little progress has been made in therapeutic development for exposure victims. Given the postexposure behavior of OPA materials in enzymes such as acetylcholinesterase (AChE), development of electrophilic compounds as therapeutics may be more beneficial than the currently employed nucleophilic countermeasures. In this report, we present our studies with an electrophilic, 16-electron manganese complex (iPrPNP)Mn(CO)2 (1) and the nucleophilic hydroxide derivative (iPrPNHP)Mn(CO)2(OH) (2). The reactivity of 1 with phosphorus acids and the reactivity of 2 with the P-F bond of diisopropylfluorophosphate (DIPF) were studied. The role of water in both nucleophilic and electrophilic reactivity was investigated with the use of 17O-labeled water. Promising results arising from reactions of both 1 and 2 with organophosphorus substrates are reported.
Collapse
Affiliation(s)
- Brooke
N. Livesay
- Los Alamos National Laboratory, Los Alamos, New Mexico 87544, United States
| | - Jurgen G. Schmidt
- Los Alamos National Laboratory, Los Alamos, New Mexico 87544, United States
| | - Robert F. Williams
- Los Alamos National Laboratory, Los Alamos, New Mexico 87544, United States
| | - Brennan S. Billow
- Los Alamos National Laboratory, Los Alamos, New Mexico 87544, United States
| | - Aaron M. Tondreau
- Los Alamos National Laboratory, Los Alamos, New Mexico 87544, United States
| |
Collapse
|
3
|
Ghosh A, Hegde RV, Limaye AS, R. T, Patil SA, Dateer RB. Biogenic synthesis of δ‐MnO 2 nanoparticles: A sustainable approach for C‐alkylation and quinoline synthesis via acceptorless dehydrogenation and borrowing hydrogen reactions. Appl Organomet Chem 2023; 37. [DOI: 10.1002/aoc.7119] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 04/06/2023] [Indexed: 01/06/2025]
Abstract
The sustainable and environmentally benign biogenic synthesis of manganese‐oxide nanoparticles (MnO2 NPs) in a single crystalline δ‐phase and its subsequent synthetic utility have been described. The synthesized δ‐MnO2 NPs were characterized using scanning electron microscopy (SEM), energy dispersive X‐ray (EDX), and X‐ray diffraction (XRD) analysis techniques. The detailed analysis envisages the reduction of Mn(VII) to Mn(IV) was facilitated by various phytochemicals present in the aq. mango leaves extract, avoiding the use of external ligand source. The synthesized δ‐MnO2 NPs were perceived in a single delta (δ) monoclinic crystalline phase, wherein a spherical agglomerated morphology was displayed with a particle size of <5 nm. Further, the utility of newly developed δ‐MnO2 NPs was showcased for alpha‐keto‐alkylation and quinoline synthesis via hydrogen autotransfer and the acceptorless dehydrogenative coupling strategy. Moreover, a series of control experiments, mechanistic elucidation, catalyst recyclability, and a dye removal study were demonstrated.
Collapse
Affiliation(s)
- Arnab Ghosh
- Centre for Nano and Material Sciences JAIN (Deemed to be University) Jain Global Campus, Kanakapura road Bangalore 562112 India
- Department of Chemistry Education Chungbuk National University Cheongju 28644 Republic of Korea
| | - Rajeev V. Hegde
- Centre for Nano and Material Sciences JAIN (Deemed to be University) Jain Global Campus, Kanakapura road Bangalore 562112 India
- Department of Chemistry Indian Institute of Technology Bombay Mumbai 400076 India
| | - Akshay S. Limaye
- Centre for Nano and Material Sciences JAIN (Deemed to be University) Jain Global Campus, Kanakapura road Bangalore 562112 India
| | - Thrilokraj R.
- Centre for Nano and Material Sciences JAIN (Deemed to be University) Jain Global Campus, Kanakapura road Bangalore 562112 India
| | - Siddappa A. Patil
- Centre for Nano and Material Sciences JAIN (Deemed to be University) Jain Global Campus, Kanakapura road Bangalore 562112 India
| | - Ramesh B. Dateer
- Centre for Nano and Material Sciences JAIN (Deemed to be University) Jain Global Campus, Kanakapura road Bangalore 562112 India
| |
Collapse
|
4
|
Ru(II)-p-cymene complexes containing hydrazone ligands catalyzed α-alkylation of ketones and one-pot synthesis of bioactive quinolines and 3-(quinolin-2-yl)-2H-chromen-2-one. J Organomet Chem 2023. [DOI: 10.1016/j.jorganchem.2023.122622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
5
|
Ibrahim H, Bala MD, Friedrich HB. Poly-functional imino-N-heterocyclic carbene ligands: Synthesis, complexation, and catalytic applications. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
6
|
Bains AK, Biswas A, Kundu A, Adhikari D. Nickel‐Catalysis Enabling α‐Alkylation of Ketones by Secondary Alcohols. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Amreen K Bains
- Department of Chemical Sciences Indian Institute of Science Education and Research (IISER) – Mohali SAS Nagar Punjab-140306 India
| | - Ayanangshu Biswas
- Department of Chemical Sciences Indian Institute of Science Education and Research (IISER) – Mohali SAS Nagar Punjab-140306 India
| | - Abhishek Kundu
- Department of Chemical Sciences Indian Institute of Science Education and Research (IISER) – Mohali SAS Nagar Punjab-140306 India
| | - Debashis Adhikari
- Department of Chemical Sciences Indian Institute of Science Education and Research (IISER) – Mohali SAS Nagar Punjab-140306 India
| |
Collapse
|
7
|
Maji A, Gupta S, Maji M, Kundu S. Well-Defined Phosphine-Free Manganese(II)-Complex-Catalyzed Synthesis of Quinolines, Pyrroles, and Pyridines. J Org Chem 2022; 87:8351-8367. [PMID: 35726206 DOI: 10.1021/acs.joc.2c00167] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Herein, we report a simple, phosphine-free, and inexpensive catalytic system based on a manganese(II) complex for synthesizing different important N-heterocycles such as quinolines, pyrroles, and pyridines from amino alcohols and ketones. Several control experiments, kinetic studies, and DFT calculations were carried out to support the plausible reaction mechanism. We also detected two potential intermediates in the catalytic cycle using ESI-MS analysis. Based on these studies, a metal-ligand cooperative mechanism was proposed.
Collapse
Affiliation(s)
- Ankur Maji
- Department of Chemistry, Indian Institute of Technology, Kanpur, Uttar Pradesh 208016, India
| | - Shivangi Gupta
- Department of Chemistry, Indian Institute of Technology, Kanpur, Uttar Pradesh 208016, India
| | - Milan Maji
- Department of Chemistry, Indian Institute of Technology, Kanpur, Uttar Pradesh 208016, India
| | - Sabuj Kundu
- Department of Chemistry, Indian Institute of Technology, Kanpur, Uttar Pradesh 208016, India
| |
Collapse
|
8
|
Song A, Liu Y, Jin X, Su D, Li Z, Yu S, Xing L, Xu X, Wang R, Li F. Metal-ligand cooperative iridium complex catalyzed C-alkylation of oxindole and 1,3-dimethylbarbituric acid using alcohols. GREEN SYNTHESIS AND CATALYSIS 2022. [DOI: 10.1016/j.gresc.2022.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
|
9
|
Sharma R, Mondal A, Samanta A, Biswas N, Das B, Srimani D. Well‐Defined Ni−SNS Complex Catalysed Borrowing Hydrogenative α‐Alkylation of Ketones and Dehydrogenative Synthesis of Quinolines. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Rahul Sharma
- Department of Chemistry Indian Institute of Technology-Guwahati Kamrup Assam 781039 India
| | - Avijit Mondal
- Department of Chemistry Indian Institute of Technology-Guwahati Kamrup Assam 781039 India
| | - Arup Samanta
- Department of Chemistry Indian Institute of Technology-Guwahati Kamrup Assam 781039 India
| | - Nandita Biswas
- Department of Chemistry Indian Institute of Technology-Guwahati Kamrup Assam 781039 India
| | - Babulal Das
- Department of Chemistry Indian Institute of Technology-Guwahati Kamrup Assam 781039 India
| | - Dipankar Srimani
- Department of Chemistry Indian Institute of Technology-Guwahati Kamrup Assam 781039 India
| |
Collapse
|
10
|
Song A, Liu S, Wang M, Lu Y, Wang R, Xing LB. Iridium-catalyzed synthesis of β-methylated secondary alcohols using methanol. J Catal 2022. [DOI: 10.1016/j.jcat.2022.01.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
11
|
Gausas L, Donslund BS, Kristensen SK, Skrydstrup T. Evaluation of Manganese Catalysts for the Hydrogenative Deconstruction of Commercial and End-of-Life Polyurethane Samples. CHEMSUSCHEM 2022; 15:e202101705. [PMID: 34510781 DOI: 10.1002/cssc.202101705] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/08/2021] [Indexed: 06/13/2023]
Abstract
Polyurethane (PU) is a thermoset plastic that is found in everyday objects, such as mattresses and shoes, but also in more sophisticated materials, including windmills and airplanes, and as insulation materials in refrigerators and buildings. Because of extensive inter-cross linkages in PU, current recycling methods are somewhat lacking. In this work, the effective catalytic hydrogenation of PU materials is carried out by applying a catalyst based on the earth-abundant metal manganese, to give amine and polyol fractions, which represent the original monomeric composition. In particular, Mn-Ph MACHO is found to catalytically deconstruct flexible foam, molded foams, insulation, and end-of-life materials at 1 wt.% catalyst loading by applying a reaction temperature of 180 °C, 50 bar of H2 , and 0.9 wt.% of KOH in isopropyl alcohol. The protocol is showcased in the catalytic deconstruction of 2 g of mattress foam using only 0.13 wt.% catalyst, resulting in 90 % weight recovery and a turnover number of 905.
Collapse
Affiliation(s)
- Laurynas Gausas
- Carbon Dioxide Activation Center (CADIAC), Interdisciplinary Nanoscience Center (iNANO) and, Department of Chemistry, Aarhus University, Gustav Wieds Vej 14, 8000, Aarhus C, Denmark
| | - Bjarke S Donslund
- Carbon Dioxide Activation Center (CADIAC), Interdisciplinary Nanoscience Center (iNANO) and, Department of Chemistry, Aarhus University, Gustav Wieds Vej 14, 8000, Aarhus C, Denmark
| | - Steffan K Kristensen
- Carbon Dioxide Activation Center (CADIAC), Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000, Aarhus C, Denmark
| | - Troels Skrydstrup
- Carbon Dioxide Activation Center (CADIAC), Interdisciplinary Nanoscience Center (iNANO) and, Department of Chemistry, Aarhus University, Gustav Wieds Vej 14, 8000, Aarhus C, Denmark
| |
Collapse
|
12
|
Subaramanian M, Sivakumar G, Balaraman E. First-Row Transition-Metal Catalyzed Acceptorless Dehydrogenation and Related Reactions: A Personal Account. CHEM REC 2021; 21:3839-3871. [PMID: 34415674 DOI: 10.1002/tcr.202100165] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 07/17/2021] [Accepted: 08/04/2021] [Indexed: 12/17/2022]
Abstract
The development of sustainable catalytic protocols that circumvent the use of expensive and precious metal catalysts and avoid toxic reagents plays a crucial role in organic synthesis. Indeed, the direct employment of simple and abundantly available feedstock chemicals as the starting materials broadens their synthetic application in contemporary research. In particular, the transition metal-catalyzed diversification of alcohols with various nucleophilic partners to construct a wide range of building blocks is a powerful and highly desirable methodology. Moreover, the replacement of precious metal catalysts by non-precious and less toxic metals for selective transformations is one of the main goals and has been paid significant attention to in modern chemistry. In view of this, the first-row transition metal catalysts find extensive applications in various synthetic transformations such as catalytic hydrogenation, dehydrogenation, and related reactions. Herein, we have disclosed our recent developments on the base-metal catalysis such as Mn, Fe, Co, and Ni for the acceptorless dehydrogenation reactions and its application in the C-C and C-N bond formation via hydrogen auto-transfer (HA) and acceptorless dehydrogenation coupling (ADC) reactions. These HA/ADC protocols employ alcohol as alkylating agents and eliminate water and/or hydrogen gas as by-products, representing highly atom-efficient and environmentally benign reactions. Furthermore, diverse simple to complex organic molecules synthesis by C-C and C-N bond formation using feedstock alcohols are also overviewed. Overall, this account deals with the contribution and development of efficient and novel homogeneous as well as heterogeneous base-metal catalysts for sustainable chemical synthesis.
Collapse
Affiliation(s)
- Murugan Subaramanian
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati, 517507, India
| | - Ganesan Sivakumar
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati, 517507, India
| | - Ekambaram Balaraman
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati, 517507, India
| |
Collapse
|
13
|
Kaur M, U Din Reshi N, Patra K, Bhattacherya A, Kunnikuruvan S, Bera JK. A Proton-Responsive Pyridyl(benzamide)-Functionalized NHC Ligand on Ir Complex for Alkylation of Ketones and Secondary Alcohols. Chemistry 2021; 27:10737-10748. [PMID: 33998720 DOI: 10.1002/chem.202101360] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Indexed: 12/22/2022]
Abstract
A Cp*Ir(III) complex (1) of a newly designed ligand L1 featuring a proton-responsive pyridyl(benzamide) appended on N-heterocyclic carbene (NHC) has been synthesized. The molecular structure of 1 reveals a dearomatized form of the ligand. The protonation of 1 with HBF4 in tetrahydrofuran gives the corresponding aromatized complex [Cp*Ir(L1 H)Cl]BF4 (2). Both compounds are characterized spectroscopically and by X-ray crystallography. The protonation of 1 with acid is examined by 1 H NMR and UV-vis spectra. The proton-responsive character of 1 is exploited for catalyzing α-alkylation of ketones and β-alkylation of secondary alcohols using primary alcohols as alkylating agents through hydrogen-borrowing methodology. Compound 1 is an effective catalyst for these reactions and exhibits a superior activity in comparison to a structurally similar iridium complex [Cp*Ir(L2 )Cl]PF6 (3) lacking a proton-responsive pendant amide moiety. The catalytic alkylation is characterized by a wide substrate scope, low catalyst and base loadings, and a short reaction time. The catalytic efficacy of 1 is also demonstrated for the syntheses of quinoline and lactone derivatives via acceptorless dehydrogenation, and selective alkylation of two steroids, pregnenolone and testosterone. Detailed mechanistic investigations and DFT calculations substantiate the role of the proton-responsive ligand in the hydrogen-borrowing process.
Collapse
Affiliation(s)
- Mandeep Kaur
- Department of Chemistry and Center for Environmental Sciences and Engineering, Indian Institute of Technology Kanpur, Kanpur, 208016, India
| | - Noor U Din Reshi
- Department of Chemistry and Center for Environmental Sciences and Engineering, Indian Institute of Technology Kanpur, Kanpur, 208016, India
| | - Kamaless Patra
- Department of Chemistry and Center for Environmental Sciences and Engineering, Indian Institute of Technology Kanpur, Kanpur, 208016, India
| | - Arindom Bhattacherya
- Department of Chemistry and Center for Environmental Sciences and Engineering, Indian Institute of Technology Kanpur, Kanpur, 208016, India
| | - Sooraj Kunnikuruvan
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Vithura, Thiruvananthapuram, 695551, India
| | - Jitendra K Bera
- Department of Chemistry and Center for Environmental Sciences and Engineering, Indian Institute of Technology Kanpur, Kanpur, 208016, India
| |
Collapse
|
14
|
Nad P, Mukherjee A. Acceptorless Dehydrogenative Coupling Reactions by Manganese Pincer Complexes. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100249] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Pinaki Nad
- Department of Chemistry Indian Institute of Technology Bhilai GEC Campus Sejbahar Raipur, Chhattisgarh 492015 India
| | - Arup Mukherjee
- Department of Chemistry Indian Institute of Technology Bhilai GEC Campus Sejbahar Raipur, Chhattisgarh 492015 India
| |
Collapse
|
15
|
Verma A, Hazra S, Dolui P, Elias AJ. Ruthenium‐Catalyzed Synthesis of α‐Alkylated Ketones and Quinolines in an Aqueous Medium via a Hydrogen‐Borrowing Strategy Using Ketones and Alcohols. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202000686] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Ashutosh Verma
- Department of Chemistry Indian Institute of Technology Hauz Khas New Delhi 110016 India
| | - Susanta Hazra
- Department of Chemistry Indian Institute of Technology Hauz Khas New Delhi 110016 India
| | - Pritam Dolui
- Department of Chemistry Indian Institute of Technology Hauz Khas New Delhi 110016 India
| | - Anil J. Elias
- Department of Chemistry Indian Institute of Technology Hauz Khas New Delhi 110016 India
| |
Collapse
|
16
|
Lan XB, Ye Z, Yang C, Li W, Liu J, Huang M, Liu Y, Ke Z. Tungsten-Catalyzed Direct N-Alkylation of Anilines with Alcohols. CHEMSUSCHEM 2021; 14:860-865. [PMID: 33350585 DOI: 10.1002/cssc.202002830] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Indexed: 06/12/2023]
Abstract
The implementation of non-noble metals mediated chemistry is a major goal in homogeneous catalysis. Borrowing hydrogen/hydrogen autotransfer (BH/HA) reaction, as a straightforward and sustainable synthetic method, has attracted considerable attention in the development of non-noble metal catalysts. Herein, we report a tungsten-catalyzed N-alkylation reaction of anilines with primary alcohols via BH/HA. This phosphine-free W(phen)(CO)4 (phen=1,10-phenthroline) system was demonstrated as a practical and easily accessible in-situ catalysis for a broad range of amines and alcohols (up to 49 examples, including 16 previously undisclosed products). Notably, this tungsten system can tolerate numerous functional groups, especially the challenging substrates with sterically hindered substituents, or heteroatoms. Mechanistic insights based on experimental and computational studies are also provided.
Collapse
Affiliation(s)
- Xiao-Bing Lan
- School of Materials Science & Engineering, PCFM Lab, Sun Yat-sen University, Guangzhou, 510275, P. R. China
- Hunan Provincial Key Laboratory of Xiangnan Rare-Precious Metals Compounds Research and Application School of Chemistry & Biology and Environmental Engineering, Xiangnan University, Chenzhou, Hunan Province, 423000, P. R. China
| | - Zongren Ye
- School of Materials Science & Engineering, PCFM Lab, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Chenhui Yang
- School of Materials Science & Engineering, PCFM Lab, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Weikang Li
- School of Materials Science & Engineering, PCFM Lab, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Jiahao Liu
- School of Materials Science & Engineering, PCFM Lab, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Ming Huang
- School of Materials Science & Engineering, PCFM Lab, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Yan Liu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| | - Zhuofeng Ke
- School of Materials Science & Engineering, PCFM Lab, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| |
Collapse
|
17
|
Pang Y, Liu G, Huang C, Yuan X, Li W, Xie J. A Highly Efficient Dimeric Manganese‐Catalyzed Selective Hydroarylation of Internal Alkynes. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202004950] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Yubo Pang
- State Key Laboratory of Coordination Chemistry Jiangsu Key Laboratory of Advanced Organic Materials Chemistry and Biomedicine Innovation Center (ChemBIC) School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Gengtu Liu
- State Key Laboratory of Coordination Chemistry Jiangsu Key Laboratory of Advanced Organic Materials Chemistry and Biomedicine Innovation Center (ChemBIC) School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Congcong Huang
- School of Chemistry and Chemical Engineering Qufu Normal University Qufu 273165 China
| | - Xiang‐Ai Yuan
- School of Chemistry and Chemical Engineering Qufu Normal University Qufu 273165 China
| | - Weipeng Li
- State Key Laboratory of Coordination Chemistry Jiangsu Key Laboratory of Advanced Organic Materials Chemistry and Biomedicine Innovation Center (ChemBIC) School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Jin Xie
- State Key Laboratory of Coordination Chemistry Jiangsu Key Laboratory of Advanced Organic Materials Chemistry and Biomedicine Innovation Center (ChemBIC) School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| |
Collapse
|
18
|
Pang Y, Liu G, Huang C, Yuan XA, Li W, Xie J. A Highly Efficient Dimeric Manganese-Catalyzed Selective Hydroarylation of Internal Alkynes. Angew Chem Int Ed Engl 2020; 59:12789-12794. [PMID: 32329559 DOI: 10.1002/anie.202004950] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Indexed: 12/28/2022]
Abstract
We have developed a general and site-predictable manganese-catalyzed hydroarylation of internal alkynes in the presence of water, under an air atmosphere without the involvement of ligand. The unique catalytic feature of this reaction is highlighted by comparison with other widely used transition metal catalysts including palladium, rhodium, nickel, or copper. The simple operation, high efficiency and excellent functional group compatibility make this protocol practical for more than 90 structurally diverse internal alkynes, overcoming the influence of both electronic and steric effect of alkynes. Its exclusive regio- and chemoselectivity originates from the unique reactivity of the manganese-based catalyst towards an inherent double controlled strategy of sterically hindered propargyl alcohols without the installing of external directing groups. Its synthetic robustness and practicality have been illustrated by the concise synthesis of bervastatin, a hypolipidemic drug, and late-stage modification of complex alkynes with precise regioselectivity.
Collapse
Affiliation(s)
- Yubo Pang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Gengtu Liu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Congcong Huang
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, China
| | - Xiang-Ai Yuan
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, China
| | - Weipeng Li
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Jin Xie
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
19
|
Lan XB, Ye Z, Liu J, Huang M, Shao Y, Cai X, Liu Y, Ke Z. Sustainable and Selective Alkylation of Deactivated Secondary Alcohols to Ketones by Non-bifunctional Pincer N-heterocyclic Carbene Manganese. CHEMSUSCHEM 2020; 13:2557-2563. [PMID: 32233008 DOI: 10.1002/cssc.202000576] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Indexed: 06/10/2023]
Abstract
A sustainable and green route to access diverse functionalized ketones via dehydrogenative-dehydrative cross-coupling of primary and secondary alcohols is demonstrated. This borrowing hydrogen approach employing a pincer N-heterocyclic carbene Mn complex displays high activity and selectivity. A variety of primary and secondary alcohols are well tolerant and result in satisfactory isolated yields. Mechanistic studies suggest that this reaction proceeds via a direct outer-sphere mechanism and the dehydrogenation of the secondary alcohol substrates plays a vital role in the rate-limiting step.
Collapse
Affiliation(s)
- Xiao-Bing Lan
- School of Materials Science & Engineering, PCFM Lab, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Zongren Ye
- School of Materials Science & Engineering, PCFM Lab, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Jiahao Liu
- School of Materials Science & Engineering, PCFM Lab, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Ming Huang
- School of Materials Science & Engineering, PCFM Lab, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Youxiang Shao
- School of Materials Science & Engineering, PCFM Lab, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Xiang Cai
- Department of Light Chemical Engineering, Guangdong Polytechnic, Foshan, 528041, P. R. China
| | - Yan Liu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| | - Zhuofeng Ke
- School of Materials Science & Engineering, PCFM Lab, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| |
Collapse
|
20
|
Wang D, Dong J, Fan W, Yuan XA, Han J, Xie J. Dimeric Manganese-Catalyzed Hydroarylation and Hydroalkenylation of Unsaturated Amides. Angew Chem Int Ed Engl 2020; 59:8430-8434. [PMID: 32129534 DOI: 10.1002/anie.201916305] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 02/13/2020] [Indexed: 02/04/2023]
Abstract
An unprecedented Mn(I)-catalyzed selective hydroarylation and hydroalkenylation of unsaturated amides with commercially available organic boronic acids is reported. Alkenyl boronic acids have been successfully employed for the first time in Mn(I)-catalyzed carbon-carbon bond formation. A wide array of β-alkenylated amide products can be obtained in moderate to good yields, which offers practical access to five- and six-membered lactams. This protocol has predictable regio- and chemoselectivity, excellent functional group compatibility and ease of operation in air, representing a significant step-forward towards manganese-catalyzed C-C coupling.
Collapse
Affiliation(s)
- Dongping Wang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Jie Dong
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Wenjing Fan
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, China
| | - Xiang-Ai Yuan
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, China
| | - Jian Han
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Jin Xie
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
21
|
Wang D, Dong J, Fan W, Yuan X, Han J, Xie J. Dimeric Manganese‐Catalyzed Hydroarylation and Hydroalkenylation of Unsaturated Amides. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201916305] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Dongping Wang
- State Key Laboratory of Coordination Chemistry Jiangsu Key Laboratory of Advanced Organic Materials Chemistry and Biomedicine Innovation Center (ChemBIC) School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Jie Dong
- State Key Laboratory of Coordination Chemistry Jiangsu Key Laboratory of Advanced Organic Materials Chemistry and Biomedicine Innovation Center (ChemBIC) School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Wenjing Fan
- School of Chemistry and Chemical Engineering Qufu Normal University Qufu 273165 China
| | - Xiang‐Ai Yuan
- School of Chemistry and Chemical Engineering Qufu Normal University Qufu 273165 China
| | - Jian Han
- State Key Laboratory of Coordination Chemistry Jiangsu Key Laboratory of Advanced Organic Materials Chemistry and Biomedicine Innovation Center (ChemBIC) School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Jin Xie
- State Key Laboratory of Coordination Chemistry Jiangsu Key Laboratory of Advanced Organic Materials Chemistry and Biomedicine Innovation Center (ChemBIC) School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| |
Collapse
|
22
|
Bihanic C, Richards K, Olszewski TK, Grison C. Eco‐Mn Ecocatalysts: Toolbox for Sustainable and Green Lewis Acid Catalysis and Oxidation Reactions. ChemCatChem 2020. [DOI: 10.1002/cctc.201901845] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Camille Bihanic
- Laboratory of Bio-inspired Chemistry and Ecological Innovations (ChimEco), UMR 5021, CNRS –University of Montpellier Cap Delta, 1682 rue de la Valsière 34790 Grabels France
| | - Kenza Richards
- Laboratory of Bio-inspired Chemistry and Ecological Innovations (ChimEco), UMR 5021, CNRS –University of Montpellier Cap Delta, 1682 rue de la Valsière 34790 Grabels France
| | - Tomasz K. Olszewski
- Wroclaw University of Science and Technology Wybrzeze Wyspianskiego 29 50-370 Wroclaw Poland
| | - Claude Grison
- Laboratory of Bio-inspired Chemistry and Ecological Innovations (ChimEco), UMR 5021, CNRS –University of Montpellier Cap Delta, 1682 rue de la Valsière 34790 Grabels France
| |
Collapse
|
23
|
Rohit KR, Radhika S, Saranya S, Anilkumar G. Manganese‐Catalysed Dehydrogenative Coupling – An Overview. Adv Synth Catal 2020. [DOI: 10.1002/adsc.201901389] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- K. R. Rohit
- School of Chemical SciencesMahatma Gandhi University Kottayam Kerala 686560 India
| | - Sankaran Radhika
- School of Chemical SciencesMahatma Gandhi University Kottayam Kerala 686560 India
| | - Salim Saranya
- School of Chemical SciencesMahatma Gandhi University Kottayam Kerala 686560 India
| | - Gopinathan Anilkumar
- School of Chemical SciencesMahatma Gandhi University Kottayam Kerala 686560 India
| |
Collapse
|
24
|
Piehl P, Amuso R, Alberico E, Junge H, Gabriele B, Neumann H, Beller M. Cyclometalated Ruthenium Pincer Complexes as Catalysts for the α-Alkylation of Ketones with Alcohols. Chemistry 2020; 26:6050-6055. [PMID: 31985105 PMCID: PMC7317879 DOI: 10.1002/chem.202000396] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Indexed: 11/29/2022]
Abstract
Ruthenium PNP pincer complexes bearing supplementary cyclometalated C,N‐bound ligands have been prepared and fully characterized for the first time. By replacing CO and H− as ancillary ligands in such complexes, additional electronic and steric modifications of this topical class of catalysts are possible. The advantages of the new catalysts are demonstrated in the general α‐alkylation of ketones with alcohols following a hydrogen autotransfer protocol. Herein, various aliphatic and benzylic alcohols were applied as green alkylating agents for ketones bearing aromatic, heteroaromatic or aliphatic substituents as well as cyclic ones. Mechanistic investigations revealed that during catalysis, Ru carboxylate complexes are predominantly formed whereas neither the PNP nor the CN ligand are released from the catalyst in significant amounts.
Collapse
Affiliation(s)
- Patrick Piehl
- Leibniz-Institut für Katalyse e.V., Albert-Einstein-Strasse 29a, 18059, Rostock, Germany
| | - Roberta Amuso
- Leibniz-Institut für Katalyse e.V., Albert-Einstein-Strasse 29a, 18059, Rostock, Germany.,Laboratory of Industrial and Synthetic Organic Chemistry (LISOC), Department of Chemistry and Chemical Technologies, University of Calabria, Via Pietro Bucci 12/C, 87036, Arcavacata di, Rende (CS, Italy
| | - Elisabetta Alberico
- Leibniz-Institut für Katalyse e.V., Albert-Einstein-Strasse 29a, 18059, Rostock, Germany.,Istituto di Chimica Biomolecolare, CNR, tr. La Crucca 3, 07100, Sassari, Italy
| | - Henrik Junge
- Leibniz-Institut für Katalyse e.V., Albert-Einstein-Strasse 29a, 18059, Rostock, Germany
| | - Bartolo Gabriele
- Laboratory of Industrial and Synthetic Organic Chemistry (LISOC), Department of Chemistry and Chemical Technologies, University of Calabria, Via Pietro Bucci 12/C, 87036, Arcavacata di, Rende (CS, Italy
| | - Helfried Neumann
- Leibniz-Institut für Katalyse e.V., Albert-Einstein-Strasse 29a, 18059, Rostock, Germany
| | - Matthias Beller
- Leibniz-Institut für Katalyse e.V., Albert-Einstein-Strasse 29a, 18059, Rostock, Germany
| |
Collapse
|
25
|
Runikhina SA, Afanasyev OI, Biriukov K, Perekalin DS, Klussmann M, Chusov D. Aldehydes as Alkylating Agents for Ketones. Chemistry 2019; 25:16225-16229. [PMID: 31603584 DOI: 10.1002/chem.201904605] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Indexed: 11/06/2022]
Abstract
Common and non-toxic aldehydes are proposed as reagents for alkylation of ketones instead of carcinogenic alkyl halides. The developed reductive alkylation reaction proceeds in the presence of the commercially available ruthenium catalyst [(cymene)RuCl2 ]2 (as low as 250 ppm) and carbon monoxide as the reducing agent. The reaction works well for a broad substrate scope, including aromatic and aliphatic aldehydes and ketones. It can be carried out without a solvent and often gives nearly quantitative yields of the products. This straightforward and cost-effective method is promising not only for laboratory application but also for industry, which produces carbon monoxide as a large-scale waste product.
Collapse
Affiliation(s)
- Sofiya A Runikhina
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilova St. 28, 119991, Moscow, Russia
| | - Oleg I Afanasyev
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilova St. 28, 119991, Moscow, Russia
| | - Klim Biriukov
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilova St. 28, 119991, Moscow, Russia
| | - Dmitry S Perekalin
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilova St. 28, 119991, Moscow, Russia.,G.V. Plekhanov Russian University of Economics, 36 Stremyanny Per., 117997, Moscow, Russia
| | - Martin Klussmann
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany
| | - Denis Chusov
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilova St. 28, 119991, Moscow, Russia.,G.V. Plekhanov Russian University of Economics, 36 Stremyanny Per., 117997, Moscow, Russia
| |
Collapse
|
26
|
Ibrahim JJ, Reddy CB, Zhang S, Yang Y. Ligand‐Free FeCl
2
‐Catalyzed α‐Alkylation of Ketones with Alcohols. ASIAN J ORG CHEM 2019. [DOI: 10.1002/ajoc.201900438] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Jessica Juweriah Ibrahim
- Qingdao Institute of Bioenergy and Bioprocess TechnologyChinese Academy of Sciences Qingdao 266101 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - C. Bal Reddy
- Qingdao Institute of Bioenergy and Bioprocess TechnologyChinese Academy of Sciences Qingdao 266101 China
| | - Shaochun Zhang
- Qingdao Institute of Bioenergy and Bioprocess TechnologyChinese Academy of Sciences Qingdao 266101 China
| | - Yong Yang
- Qingdao Institute of Bioenergy and Bioprocess TechnologyChinese Academy of Sciences Qingdao 266101 China
| |
Collapse
|
27
|
Chakraborty P, Gangwar MK, Emayavaramban B, Manoury E, Poli R, Sundararaju B. α-Alkylation of Ketones with Secondary Alcohols Catalyzed by Well-Defined Cp*Co III -Complexes. CHEMSUSCHEM 2019; 12:3463-3467. [PMID: 31240858 DOI: 10.1002/cssc.201900990] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 06/10/2019] [Indexed: 05/20/2023]
Abstract
Although α-alkylation of ketones with primary alcohols by transition-metal catalysis is well-known, the same process with secondary alcohols is arduous and complicated by self-condensation. Herein a well-defined, high-valence cobalt(III)-catalyst was applied for successful α-alkylation of ketones with secondary alcohols. A wide-variety of secondary alcohols, which include cyclic, acyclic, symmetrical, and unsymmetrical compounds, was employed as alkylating agents to produce β-alkyl aryl ketones.
Collapse
Affiliation(s)
- Priyanka Chakraborty
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, 208 016, India
| | - Manoj Kumar Gangwar
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, 208 016, India
| | - Balakumar Emayavaramban
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, 208 016, India
| | - Eric Manoury
- Fine CNRS, LCC (Laboratoire de Chimie de Coordination), Université de Toulouse, UPS, INPT, 205 Route de Narbonne, F-31077, Toulouse Cedex 4, France
| | - Rinaldo Poli
- Fine CNRS, LCC (Laboratoire de Chimie de Coordination), Université de Toulouse, UPS, INPT, 205 Route de Narbonne, F-31077, Toulouse Cedex 4, France
| | - Basker Sundararaju
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, 208 016, India
| |
Collapse
|
28
|
Liu Y, Shao Z, Wang Y, Xu L, Yu Z, Liu Q. Manganese-Catalyzed Selective Upgrading of Ethanol with Methanol into Isobutanol. CHEMSUSCHEM 2019; 12:3069-3072. [PMID: 30724026 DOI: 10.1002/cssc.201802689] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 01/28/2019] [Indexed: 06/09/2023]
Abstract
Isobutanol serves as an ideal gasoline additive owing to its good compatibility with current engine technology, high energy density, and high octane number. Herein, an efficient and selective Mn-catalyzed upgrading of ethanol with methanol into isobutanol is reported. This is the first example of deoxygenative coupling of lower alcohols to isobutanol by using a homogeneous non-noble-metal catalyst. This transformation proceeded at very low catalyst loading with a high turnover number (9233) and up to 96 % isobutanol selectivity.
Collapse
Affiliation(s)
- Yaqian Liu
- Department of Chemistry, Renmin University of China, Beijing, 100872, P.R. China
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing, 100084, P.R. China
| | - Zhihui Shao
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing, 100084, P.R. China
| | - Yujie Wang
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing, 100084, P.R. China
| | - Lijin Xu
- Department of Chemistry, Renmin University of China, Beijing, 100872, P.R. China
| | - Zhiyong Yu
- Department of Chemistry, Renmin University of China, Beijing, 100872, P.R. China
| | - Qiang Liu
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing, 100084, P.R. China
| |
Collapse
|
29
|
Wei D, Dorcet V, Darcel C, Sortais JB. Synthesis of Quinolines Through Acceptorless Dehydrogenative Coupling Catalyzed by Rhenium PN(H)P Complexes. CHEMSUSCHEM 2019; 12:3078-3082. [PMID: 30570829 DOI: 10.1002/cssc.201802636] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 12/19/2018] [Indexed: 06/09/2023]
Abstract
A practical and sustainable synthesis of substituted quinolines was achieved through the annulation of 2-aminobenzyl alcohol with various secondary alcohols, ketones, aldehydes, or nitriles, under hydrogen-borrowing conditions. Under the catalysis of well-defined rhenium complexes bearing tridentate diphosphinoamino ligands, the reaction proceeded efficiently (31 examples were isolated with yields up to 96 %) affording a variety of quinoline derivatives.
Collapse
Affiliation(s)
- Duo Wei
- CNRS, ISCR-UMR 6226, Université Rennes 1, 35000, Rennes, France
- LCC-CNRS, CNRS, UPS, Université de Toulouse, 31000, Toulouse, France
| | - Vincent Dorcet
- CNRS, ISCR-UMR 6226, Université Rennes 1, 35000, Rennes, France
| | | | - Jean-Baptiste Sortais
- LCC-CNRS, CNRS, UPS, Université de Toulouse, 31000, Toulouse, France
- Institut Universitaire de France, 1 rue Descartes, 75231, Paris Cedex 05, France
| |
Collapse
|
30
|
El-Sepelgy O, Matador E, Brzozowska A, Rueping M. C-Alkylation of Secondary Alcohols by Primary Alcohols through Manganese-Catalyzed Double Hydrogen Autotransfer. CHEMSUSCHEM 2019; 12:3099-3102. [PMID: 30239145 DOI: 10.1002/cssc.201801660] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Revised: 08/14/2018] [Indexed: 06/08/2023]
Abstract
A new Mn-catalyzed alkylation of secondary alcohols with non-activated alcohols is presented. The use of a stable and well-defined manganese pincer complex, stabilized by a PNN ligand, together with a catalytic amount of base enabled the conversion of renewable alcohol feedstocks to a broad range of higher-value alcohols in good yields with water as the sole byproduct. The strategy eliminates the need for exogenous and detrimental alkyl halides as well as the use of noble metal catalysts, making the C-alkylation through double hydrogen autotransfer a highly sustainable and environmentally benign process. Mechanistic investigations support a hydrogen autotransfer mechanism in which a non-innocent ligand plays a crucial role.
Collapse
Affiliation(s)
- Osama El-Sepelgy
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| | - Esteban Matador
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| | - Aleksandra Brzozowska
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| | - Magnus Rueping
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| |
Collapse
|
31
|
Dambatta MB, Polidano K, Northey AD, Williams JMJ, Morrill LC. Iron-Catalyzed Borrowing Hydrogen C-Alkylation of Oxindoles with Alcohols. CHEMSUSCHEM 2019; 12:2345-2349. [PMID: 30958919 PMCID: PMC6619250 DOI: 10.1002/cssc.201900799] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 04/08/2019] [Indexed: 05/25/2023]
Abstract
A general and efficient iron-catalyzed C-alkylation of oxindoles has been developed. This borrowing hydrogen approach employing a (cyclopentadienone)iron carbonyl complex (2 mol %) exhibited a broad reaction scope, allowing benzylic and simple primary and secondary aliphatic alcohols to be employed as alkylating agents. A variety of oxindoles underwent selective mono-C3-alkylation in good-to-excellent isolated yields (28 examples, 50-92 % yield, 79 % average yield).
Collapse
Affiliation(s)
- Mubarak B Dambatta
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, UK
| | - Kurt Polidano
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, UK
| | - Alexander D Northey
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, UK
| | | | - Louis C Morrill
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, UK
| |
Collapse
|
32
|
Lu Y, Zhao R, Guo J, Liu Z, Menberu W, Wang Z. A Unified Mechanism to Account for Manganese‐ or Ruthenium‐Catalyzed Nitrile α‐Olefinations by Primary or Secondary Alcohols: A DFT Mechanistic Study. Chemistry 2019; 25:3939-3949. [DOI: 10.1002/chem.201806016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 01/02/2019] [Indexed: 12/16/2022]
Affiliation(s)
- Yu Lu
- School of Chemical SciencesUniversity of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Ruihua Zhao
- School of Chemical SciencesUniversity of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Jiandong Guo
- School of Chemical SciencesUniversity of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Zheyuan Liu
- School of Chemical SciencesUniversity of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Wasihun Menberu
- School of Chemical SciencesUniversity of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Zhi‐Xiang Wang
- School of Chemical SciencesUniversity of Chinese Academy of Sciences Beijing 100049 P. R. China
| |
Collapse
|
33
|
Kumar A, Janes T, Chakraborty S, Daw P, von Wolff N, Carmieli R, Diskin-Posner Y, Milstein D. C−C Bond Formation of Benzyl Alcohols and Alkynes Using a Catalytic Amount of KOt
Bu: Unusual Regioselectivity through a Radical Mechanism. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201812687] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Amit Kumar
- Department of Organic Chemistry; Weizmann Institute of Science; Rehovot 76100 Israel
| | - Trevor Janes
- Department of Organic Chemistry; Weizmann Institute of Science; Rehovot 76100 Israel
| | - Subrata Chakraborty
- Department of Organic Chemistry; Weizmann Institute of Science; Rehovot 76100 Israel
| | - Prosenjit Daw
- Department of Organic Chemistry; Weizmann Institute of Science; Rehovot 76100 Israel
| | - Niklas von Wolff
- Department of Organic Chemistry; Weizmann Institute of Science; Rehovot 76100 Israel
| | - Raanan Carmieli
- Chemical Research Support; Weizmann Institute of Science; Rehovot 76100 Israel
| | - Yael Diskin-Posner
- Chemical Research Support; Weizmann Institute of Science; Rehovot 76100 Israel
| | - David Milstein
- Department of Organic Chemistry; Weizmann Institute of Science; Rehovot 76100 Israel
| |
Collapse
|
34
|
Kumar A, Janes T, Chakraborty S, Daw P, von Wolff N, Carmieli R, Diskin-Posner Y, Milstein D. C-C Bond Formation of Benzyl Alcohols and Alkynes Using a Catalytic Amount of KO t Bu: Unusual Regioselectivity through a Radical Mechanism. Angew Chem Int Ed Engl 2019; 58:3373-3377. [PMID: 30605258 DOI: 10.1002/anie.201812687] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Indexed: 01/24/2023]
Abstract
We report a C-C bond-forming reaction between benzyl alcohols and alkynes in the presence of a catalytic amount of KOt Bu to form α-alkylated ketones in which the C=O group is located on the side derived from the alcohol. The reaction proceeds under thermal conditions (125 °C) and produces no waste, making the reaction highly atom efficient, environmentally benign, and sustainable. Based on our mechanistic investigations, we propose that the reaction proceeds through radical pathways.
Collapse
Affiliation(s)
- Amit Kumar
- Department of Organic Chemistry, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Trevor Janes
- Department of Organic Chemistry, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Subrata Chakraborty
- Department of Organic Chemistry, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Prosenjit Daw
- Department of Organic Chemistry, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Niklas von Wolff
- Department of Organic Chemistry, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Raanan Carmieli
- Chemical Research Support, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Yael Diskin-Posner
- Chemical Research Support, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - David Milstein
- Department of Organic Chemistry, Weizmann Institute of Science, Rehovot, 76100, Israel
| |
Collapse
|
35
|
Sklyaruk J, Borghs JC, El-Sepelgy O, Rueping M. Catalytic C1
Alkylation with Methanol and Isotope-Labeled Methanol. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201810885] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Jan Sklyaruk
- Institute of Organic Chemistry; RWTH Aachen University; Landoltweg 1 52074 Aachen Germany
| | - Jannik C. Borghs
- Institute of Organic Chemistry; RWTH Aachen University; Landoltweg 1 52074 Aachen Germany
| | - Osama El-Sepelgy
- Institute of Organic Chemistry; RWTH Aachen University; Landoltweg 1 52074 Aachen Germany
| | - Magnus Rueping
- Institute of Organic Chemistry; RWTH Aachen University; Landoltweg 1 52074 Aachen Germany
- KAUST Catalysis Center (KCC); King Abdullah University of Science and Technology (KAUST); Thuwal 23955-6900 Saudi Arabia
| |
Collapse
|
36
|
Sklyaruk J, Borghs JC, El-Sepelgy O, Rueping M. Catalytic C1
Alkylation with Methanol and Isotope-Labeled Methanol. Angew Chem Int Ed Engl 2018; 58:775-779. [DOI: 10.1002/anie.201810885] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 11/08/2018] [Indexed: 01/04/2023]
Affiliation(s)
- Jan Sklyaruk
- Institute of Organic Chemistry; RWTH Aachen University; Landoltweg 1 52074 Aachen Germany
| | - Jannik C. Borghs
- Institute of Organic Chemistry; RWTH Aachen University; Landoltweg 1 52074 Aachen Germany
| | - Osama El-Sepelgy
- Institute of Organic Chemistry; RWTH Aachen University; Landoltweg 1 52074 Aachen Germany
| | - Magnus Rueping
- Institute of Organic Chemistry; RWTH Aachen University; Landoltweg 1 52074 Aachen Germany
- KAUST Catalysis Center (KCC); King Abdullah University of Science and Technology (KAUST); Thuwal 23955-6900 Saudi Arabia
| |
Collapse
|
37
|
Mamidala R, Subramani MS, Samser S, Biswal P, Venkatasubbaiah K. Chemoselective Alkylation of Aminoacetophenones with Alcohols by Using a Palladacycle-Phosphine Catalyst. European J Org Chem 2018. [DOI: 10.1002/ejoc.201801155] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Ramesh Mamidala
- School of Chemical Sciences; National Institute of Science Education and Research (NISER), HBNI; 752050 Bhubaneswar Orissa India
| | - M. Siva Subramani
- School of Chemical Sciences; National Institute of Science Education and Research (NISER), HBNI; 752050 Bhubaneswar Orissa India
| | - Shaikh Samser
- School of Chemical Sciences; National Institute of Science Education and Research (NISER), HBNI; 752050 Bhubaneswar Orissa India
| | - Priyabrata Biswal
- School of Chemical Sciences; National Institute of Science Education and Research (NISER), HBNI; 752050 Bhubaneswar Orissa India
| | - Krishnan Venkatasubbaiah
- School of Chemical Sciences; National Institute of Science Education and Research (NISER), HBNI; 752050 Bhubaneswar Orissa India
| |
Collapse
|
38
|
Wang Y, Shao Z, Zhang K, Liu Q. Manganese‐Catalyzed Dual‐Deoxygenative Coupling of Primary Alcohols with 2‐Arylethanols. Angew Chem Int Ed Engl 2018; 57:15143-15147. [DOI: 10.1002/anie.201809333] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Indexed: 12/23/2022]
Affiliation(s)
- Yujie Wang
- Center of Basic Molecular Science (CBMS)Department of ChemistryTsinghua University Beijing 100084 China
| | - Zhihui Shao
- Center of Basic Molecular Science (CBMS)Department of ChemistryTsinghua University Beijing 100084 China
| | - Kun Zhang
- School of Biotechnology and Health SciencesWuyi University Jiangmen Guangdong Province 529090 China
| | - Qiang Liu
- Center of Basic Molecular Science (CBMS)Department of ChemistryTsinghua University Beijing 100084 China
- School of Biotechnology and Health SciencesWuyi University Jiangmen Guangdong Province 529090 China
| |
Collapse
|
39
|
Wang Y, Shao Z, Zhang K, Liu Q. Manganese‐Catalyzed Dual‐Deoxygenative Coupling of Primary Alcohols with 2‐Arylethanols. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201809333] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Yujie Wang
- Center of Basic Molecular Science (CBMS)Department of ChemistryTsinghua University Beijing 100084 China
| | - Zhihui Shao
- Center of Basic Molecular Science (CBMS)Department of ChemistryTsinghua University Beijing 100084 China
| | - Kun Zhang
- School of Biotechnology and Health SciencesWuyi University Jiangmen Guangdong Province 529090 China
| | - Qiang Liu
- Center of Basic Molecular Science (CBMS)Department of ChemistryTsinghua University Beijing 100084 China
- School of Biotechnology and Health SciencesWuyi University Jiangmen Guangdong Province 529090 China
| |
Collapse
|
40
|
Li L, Cao L, Yan X. Synthesis and Characterization of Palladium(II) CNC Pincer Complexes with Novel Bis(1,2,3-triazolylidene)amine Ligands. ChemistrySelect 2018. [DOI: 10.1002/slct.201802645] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Linfeng Li
- Department of Chemistry; Renmin University of China; Beijing 100872 People's Republic of China
| | - Lei Cao
- Department of Chemistry; Renmin University of China; Beijing 100872 People's Republic of China
| | - Xiaoyu Yan
- Department of Chemistry; Renmin University of China; Beijing 100872 People's Republic of China
| |
Collapse
|
41
|
Bisht GS, Pandey AM, Chaudhari MB, Agalave SG, Kanyal A, Karmodiya K, Gnanaprakasam B. Ru-Catalyzed dehydrogenative synthesis of antimalarial arylidene oxindoles. Org Biomol Chem 2018; 16:7223-7229. [PMID: 30255181 DOI: 10.1039/c8ob01852a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Ru(ii)-NHC catalyzes α-olefination of 2-oxindoles using diaryl methanols in the absence of an acceptor. A wide array of symmetrical and unsymmetrical diaryl methanols undergoes dehydrogenative coupling with 2-oxindole selectively to generate various substituted 3-(diphenylmethylene)indolin-2-one derivatives in good yields and produces environmentally benign by-products, H2 and H2O. This methodology was successfully applied for the synthesis of a bioactive drug i.e. TAS-301. The biological activities of the synthesized 3-(diphenylmethylene)indolin-2-one derivatives were screened against the Plasmodium falciparum parasite and found to exhibit a significant activity with IC50 = 2.24 μM.
Collapse
Affiliation(s)
- Girish Singh Bisht
- Department of Chemistry, Indian Institute of Science Education and Research, Pune-411008, India.
| | | | | | | | | | | | | |
Collapse
|
42
|
Rakers L, Schäfers F, Glorius F. In Water and under Mild Conditions: α‐Alkylation of Ketones with Alcohols by Phase‐Transfer‐Assisted Borrowing Hydrogen Catalysis. Chemistry 2018; 24:15529-15532. [DOI: 10.1002/chem.201804308] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Indexed: 12/13/2022]
Affiliation(s)
- Lena Rakers
- Westfälische Wilhelms-Universität Münster Organisch-Chemisches Institut Corrensstraße 40 48419 Münster Germany
| | - Felix Schäfers
- Westfälische Wilhelms-Universität Münster Organisch-Chemisches Institut Corrensstraße 40 48419 Münster Germany
| | - Frank Glorius
- Westfälische Wilhelms-Universität Münster Organisch-Chemisches Institut Corrensstraße 40 48419 Münster Germany
| |
Collapse
|
43
|
Das UK, Chakraborty S, Diskin-Posner Y, Milstein D. Direct Conversion of Alcohols into Alkenes by Dehydrogenative Coupling with Hydrazine/Hydrazone Catalyzed by Manganese. Angew Chem Int Ed Engl 2018; 57:13444-13448. [DOI: 10.1002/anie.201807881] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 08/02/2018] [Indexed: 01/05/2023]
Affiliation(s)
- Uttam Kumar Das
- Department of Organic Chemistry; Weizmann Institute of Institution; Rehovot 76100 Israel
| | - Subrata Chakraborty
- Department of Organic Chemistry; Weizmann Institute of Institution; Rehovot 76100 Israel
| | - Yael Diskin-Posner
- Chemical Research Support; Weizmann Institute of Science; Rehovot 76100 Israel
| | - David Milstein
- Department of Organic Chemistry; Weizmann Institute of Institution; Rehovot 76100 Israel
| |
Collapse
|
44
|
Das UK, Chakraborty S, Diskin-Posner Y, Milstein D. Direct Conversion of Alcohols into Alkenes by Dehydrogenative Coupling with Hydrazine/Hydrazone Catalyzed by Manganese. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201807881] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Uttam Kumar Das
- Department of Organic Chemistry; Weizmann Institute of Institution; Rehovot 76100 Israel
| | - Subrata Chakraborty
- Department of Organic Chemistry; Weizmann Institute of Institution; Rehovot 76100 Israel
| | - Yael Diskin-Posner
- Chemical Research Support; Weizmann Institute of Science; Rehovot 76100 Israel
| | - David Milstein
- Department of Organic Chemistry; Weizmann Institute of Institution; Rehovot 76100 Israel
| |
Collapse
|
45
|
Fertig R, Irrgang T, Freitag F, Zander J, Kempe R. Manganese-Catalyzed and Base-Switchable Synthesis of Amines or Imines via Borrowing Hydrogen or Dehydrogenative Condensation. ACS Catal 2018. [DOI: 10.1021/acscatal.8b02530] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Robin Fertig
- Inorganic Chemistry II—Catalyst Design, University of Bayreuth, 95440 Bayreuth, Germany
| | - Torsten Irrgang
- Inorganic Chemistry II—Catalyst Design, University of Bayreuth, 95440 Bayreuth, Germany
| | - Frederik Freitag
- Inorganic Chemistry II—Catalyst Design, University of Bayreuth, 95440 Bayreuth, Germany
| | - Judith Zander
- Inorganic Chemistry II—Catalyst Design, University of Bayreuth, 95440 Bayreuth, Germany
| | - Rhett Kempe
- Inorganic Chemistry II—Catalyst Design, University of Bayreuth, 95440 Bayreuth, Germany
| |
Collapse
|
46
|
Barman MK, Jana A, Maji B. Phosphine-Free NNN-Manganese Complex Catalyzed α-Alkylation of Ketones with Primary Alcohols and Friedländer Quinoline Synthesis. Adv Synth Catal 2018. [DOI: 10.1002/adsc.201800380] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Milan K. Barman
- Department of Chemical Sciences; Indian Institute of Science Education and Research Kolkata, Mohanpur; 741246 Nadia India
| | - Akash Jana
- Department of Chemical Sciences; Indian Institute of Science Education and Research Kolkata, Mohanpur; 741246 Nadia India
| | - Biplab Maji
- Department of Chemical Sciences; Indian Institute of Science Education and Research Kolkata, Mohanpur; 741246 Nadia India
| |
Collapse
|
47
|
Barman MK, Waiba S, Maji B. Manganese-Catalyzed Direct Olefination of Methyl-Substituted Heteroarenes with Primary Alcohols. Angew Chem Int Ed Engl 2018; 57:9126-9130. [DOI: 10.1002/anie.201804729] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Indexed: 12/31/2022]
Affiliation(s)
- Milan K. Barman
- Department of Chemical Sciences; Indian Institute of Science Education and Research Kolkata; Mohanpur 741246 India
| | - Satyadeep Waiba
- Department of Chemical Sciences; Indian Institute of Science Education and Research Kolkata; Mohanpur 741246 India
| | - Biplab Maji
- Department of Chemical Sciences; Indian Institute of Science Education and Research Kolkata; Mohanpur 741246 India
| |
Collapse
|
48
|
Barman MK, Waiba S, Maji B. Manganese-Catalyzed Direct Olefination of Methyl-Substituted Heteroarenes with Primary Alcohols. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201804729] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Milan K. Barman
- Department of Chemical Sciences; Indian Institute of Science Education and Research Kolkata; Mohanpur 741246 India
| | - Satyadeep Waiba
- Department of Chemical Sciences; Indian Institute of Science Education and Research Kolkata; Mohanpur 741246 India
| | - Biplab Maji
- Department of Chemical Sciences; Indian Institute of Science Education and Research Kolkata; Mohanpur 741246 India
| |
Collapse
|
49
|
Zhang G, Irrgang T, Dietel T, Kallmeier F, Kempe R. Mangan-katalysierte dehydrierende Alkylierung oder α-Olefinierung von Alkyl-N-heteroarenen durch Alkohole. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201801573] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Guoying Zhang
- Anorganische Chemie II - Katalysatordesign; Universität Bayreuth; 95440 Bayreuth Deutschland
- Key Laboratory of Sensor Analysis of Tumor Marker; Ministry of Education; College of Chemistry and Molecular Engineering; Qingdao University of Science and Technology; Volksrepublik China
| | - Torsten Irrgang
- Anorganische Chemie II - Katalysatordesign; Universität Bayreuth; 95440 Bayreuth Deutschland
| | - Thomas Dietel
- Anorganische Chemie II - Katalysatordesign; Universität Bayreuth; 95440 Bayreuth Deutschland
| | - Fabian Kallmeier
- Anorganische Chemie II - Katalysatordesign; Universität Bayreuth; 95440 Bayreuth Deutschland
| | - Rhett Kempe
- Anorganische Chemie II - Katalysatordesign; Universität Bayreuth; 95440 Bayreuth Deutschland
| |
Collapse
|
50
|
Zhang G, Irrgang T, Dietel T, Kallmeier F, Kempe R. Manganese-Catalyzed Dehydrogenative Alkylation or α-Olefination of Alkyl-Substituted N-Heteroarenes with Alcohols. Angew Chem Int Ed Engl 2018; 57:9131-9135. [DOI: 10.1002/anie.201801573] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Indexed: 12/14/2022]
Affiliation(s)
- Guoying Zhang
- Inorganic Chemistry II-Catalyst Design; Universität Bayreuth; 95440 Bayreuth Germany
- Key Laboratory of Sensor Analysis of Tumor Marker; Ministry of Education; College of Chemistry and Molecular Engineering; Qingdao University of Science and Technology; P. R. China
| | - Torsten Irrgang
- Inorganic Chemistry II-Catalyst Design; Universität Bayreuth; 95440 Bayreuth Germany
| | - Thomas Dietel
- Inorganic Chemistry II-Catalyst Design; Universität Bayreuth; 95440 Bayreuth Germany
| | - Fabian Kallmeier
- Inorganic Chemistry II-Catalyst Design; Universität Bayreuth; 95440 Bayreuth Germany
| | - Rhett Kempe
- Inorganic Chemistry II-Catalyst Design; Universität Bayreuth; 95440 Bayreuth Germany
| |
Collapse
|