1
|
Noureldeen AFH, Aziz SW, Shouman SA, Mohamed MM, Attia YM, Ramadan RM, Elhady MM. Molecular Design, Spectroscopic, DFT, Pharmacological, and Molecular Docking Studies of Novel Ruthenium(III)-Schiff Base Complex: An Inhibitor of Progression in HepG2 Cells. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph192013624. [PMID: 36294202 PMCID: PMC9603487 DOI: 10.3390/ijerph192013624] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/28/2022] [Accepted: 10/04/2022] [Indexed: 05/03/2023]
Abstract
A novel ruthenium(III)-pyrimidine Schiff base was synthesized and characterized using different analytical and spectroscopic techniques. Molecular geometries of the ligand and ruthenium complex were investigated using the DFT-B3LYP level of theory. The quantum global reactivity descriptors were also calculated. Various biological and molecular docking studies of the complex are reported to explore its potential application as a therapeutic drug. Cytotoxicity of the complex was screened against cancer colorectal (HCT116), breast (MCF-7 and T47D), and hepatocellular (HepG2) cell lines as well as a human normal cell line (HSF). The complex effectively inhibited the tested cancer cells with variable degree with higher activity towards HepG2 (IC50 values were 29 μM for HepG2, 38.5 μM for T47D, 39.7 μM for HCT, and 46.7 μM for MCF-7 cells). The complex induced apoptosis and cell cycle arrest in the S phase of HepG2 cells. The complex significantly induced the expression of H2AX and caspase 3 and caspase 7 gene and the protein level of caspase 3, as well as inhibited VEGF-A and mTOR/AKT, SND1, and NF-kB gene expression. The molecular docking studies supported the increased total apoptosis of treated HepG2 cells due to strong interaction of the complex with DNA. Additionally, the possible binding interaction of the complex with caspase 3 could be responsible for the elevated activity of caspase 3-treated cells. The score values for the two receptors were -3.25 and -3.91 kcal/mol.
Collapse
Affiliation(s)
- Amani F. H. Noureldeen
- Biochemistry Department, Faculty of Science, Ain Shams University, Cairo 11566, Egypt
- Correspondence: (A.F.H.N.); (R.M.R.)
| | - Safa W. Aziz
- Biochemistry Department, Faculty of Science, Ain Shams University, Cairo 11566, Egypt
- Department of Laboratory and Clinical Sciences, College of Pharmacy, University of Babylon, Babylon 51002, Iraq
| | - Samia A. Shouman
- Cancer Biology Department, National Cancer Institute, Cairo University, Cairo 12613, Egypt
| | - Magdy M. Mohamed
- Biochemistry Department, Faculty of Science, Ain Shams University, Cairo 11566, Egypt
| | - Yasmin M. Attia
- Cancer Biology Department, National Cancer Institute, Cairo University, Cairo 12613, Egypt
| | - Ramadan M. Ramadan
- Chemistry Department, Faculty of Science, Ain Shams University, Cairo 11566, Egypt
- Correspondence: (A.F.H.N.); (R.M.R.)
| | - Mostafa M. Elhady
- Biochemistry Department, Faculty of Science, Ain Shams University, Cairo 11566, Egypt
| |
Collapse
|
2
|
Mondal A, Sen U, Roy N, Muthukumar V, Sahoo SK, Bose B, Paira P. DNA targeting half sandwich Ru(II)- p-cymene-N^N complexes as cancer cell imaging and terminating agents: influence of regioisomers in cytotoxicity. Dalton Trans 2021; 50:979-997. [PMID: 33355328 DOI: 10.1039/d0dt03107k] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
For diagnosing and annihilating cancer in the human body, herein, we have adopted a one pot convenient synthetic protocol to synthesize a library of half sandwich Ru(ii)-p-cymene-N^N complexes under continuous sonication and isolated their regioisomers by preparative thin layer chromatography followed by justification of stability using DFT. The present work has resulted in a library of ruthenium arene complexes and their isolated regioisomers following environmentally benign green processes and their screening of anticancer activity in terms of cytotoxicity and selectivity against cancer cell lines where [(η6-p-cymene)RuCl{2-(5,6-dichloro-1H-benzo[d]imidazole-2-yl)quinolone}] (11j) has been elicited to be significantly more potent as well as selective in Caco-2 and HeLa cell lines than the normal HEK-293 cell line compared to cisplatin and it has even shown marked cytotoxicity against the more aggressive HT-29 colorectal cancer cell line being capable of producing oxidative stress or arresting the cell cycle. Moreover, these types of Ru(ii)-arene complexes exhibited excellent binding efficacy with DNA and the compounds [(η6-p-cymene)RuCl{5-chloro-2-(6-(4-chlorophenyl)pyridin-2-yl)benzo[d]thiazole}]PF6 (8l4), [(η6-p-cymene)Ru-2-(6-(benzofuran-2-yl)pyridin-2-yl)-5-chlorobenzo[d]thiazole (8l9) and [(η6-p-cymene)RuCl{2-(6-nitro-1H-benzo[d]imidazol-2-yl)quinolone}]Cl (11f') and might be applied for cancer theranostic treatment due to their good fluorescence properties and remarkable potency.
Collapse
Affiliation(s)
- Ashaparna Mondal
- Department of Chemistry, School of advanced sciences, Vellore Institute of Technology Vellore, 632014, Tamilnadu, India.
| | - Utsav Sen
- Department Stem Cells and Regenerative Medicine Centre, Institution Yenepoya Research Centre, Yenepoya University, University Road, Derlakatte, Mangalore 575018, Karnataka, India.
| | - Nilmadhab Roy
- Department of Chemistry, School of advanced sciences, Vellore Institute of Technology Vellore, 632014, Tamilnadu, India.
| | - Venkatesan Muthukumar
- Department of Chemistry, School of advanced sciences, Vellore Institute of Technology Vellore, 632014, Tamilnadu, India.
| | - Suban Kumar Sahoo
- Department of Applied Chemistry, S.V. National Institute of Technology (SVNIT), Ichchanath, Surat, Gujrat-395 007, India.
| | - Bipasha Bose
- Department Stem Cells and Regenerative Medicine Centre, Institution Yenepoya Research Centre, Yenepoya University, University Road, Derlakatte, Mangalore 575018, Karnataka, India.
| | - Priyankar Paira
- Department of Chemistry, School of advanced sciences, Vellore Institute of Technology Vellore, 632014, Tamilnadu, India.
| |
Collapse
|
3
|
Wang Y, Jin J, Shu L, Li T, Lu S, Subarkhan MKM, Chen C, Wang H. New Organometallic Ruthenium(II) Compounds Synergistically Show Cytotoxic, Antimetastatic and Antiangiogenic Activities for the Treatment of Metastatic Cancer. Chemistry 2020; 26:15170-15182. [PMID: 32639591 DOI: 10.1002/chem.202002970] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Indexed: 12/20/2022]
Abstract
In this study, we newly designed and synthesized a small library of ten structurally related C,N-cyclometalated ruthenium(II) complexes containing various pyridine-functionalized NHC ligand and chelating bipyridyl ligands (e.g., 2,2'-bipyridine, 5,5'-dimethyl-2,2'-bipyridine, and 1,10-phenanthroline (phen)). The complexes were well characterized by NMR, electrospray ionization-mass spectrometry, and single-crystal X-ray structure analyses. Among the new ruthenium(II) derivatives, we identified that the complex Ru8 bearing bulky moieties (i.e., phen and pentamethyl benzene) had the most potent cytotoxicity against all tested cancer cell lines, generating dose- and cell line-dependent IC50 values at the range of 3.3-15.0 μm. More significantly, Ru8 not only efficiently inhibited the metastasis process against invasion and migration of tumor cells but also exhibited potent antivascular effects by suppressing HUVEC cells migration and tube formation in vitro and blocking vessel generation in vivo (chicken chorioallantoic membrane model). In a metastatic A2780 tumor xenograft-bearing mouse model, administration of Ru8 outperformed antimetastatic agent NAMI-A and clinically approved cisplatin in terms of antitumor efficacy and inhibition of metastases to other organs. Overall, these data provided compelling evidence that the new cyclometalated ruthenium complex Ru8 is an attractive agent because of synergistically suppressing bulky tumors and metastasized tumor nudes. Therefore, the complex Ru8 deserves further investigations.
Collapse
Affiliation(s)
- Yuchen Wang
- The First Affiliated Hospital, Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, School of Medicine, Zhejiang University, Hangzhou, 310003, P.R. China.,Department of Chemical Engineering, Zhejiang University, Hangzhou, 310027, P.R. China
| | - Jiahui Jin
- Xingzhi College, Zhejiang Normal University, Jinhua, 321004, P.R. China
| | - Liwei Shu
- The First Affiliated Hospital, Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, School of Medicine, Zhejiang University, Hangzhou, 310003, P.R. China
| | - Tongyu Li
- The First Affiliated Hospital, Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, School of Medicine, Zhejiang University, Hangzhou, 310003, P.R. China
| | - Siming Lu
- Department of Laboratory Medicine, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, P.R. China
| | - Mohamed Kasim Mohamed Subarkhan
- The First Affiliated Hospital, Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, School of Medicine, Zhejiang University, Hangzhou, 310003, P.R. China
| | - Chao Chen
- College of Life Sciences, Huzhou University, Huzhou, 313000, P.R. China
| | - Hangxiang Wang
- The First Affiliated Hospital, Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, School of Medicine, Zhejiang University, Hangzhou, 310003, P.R. China
| |
Collapse
|
4
|
Xu L, Zhang PP, Fang XQ, Liu Y, Wang JQ, Zhou HZ, Chen ST, Chao H. A ruthenium(II) complex containing a p-cresol group induces apoptosis in human cervical carcinoma cells through endoplasmic reticulum stress and reactive oxygen species production. J Inorg Biochem 2019; 191:126-134. [DOI: 10.1016/j.jinorgbio.2018.11.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Revised: 11/21/2018] [Accepted: 11/25/2018] [Indexed: 10/27/2022]
|
5
|
Zeng L, Li J, Zhang C, Zhang YK, Zhang W, Huang J, Ashby CR, Chen ZS, Chao H. An organoruthenium complex overcomes ABCG2-mediated multidrug resistance via multiple mechanisms. Chem Commun (Camb) 2019; 55:3833-3836. [DOI: 10.1039/c9cc00882a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
An organoruthenium complex, RuF, via multiple mechanisms, exhibited effective anticancer activity in vitro and in vivo for surmounting multidrug resistance mediated by the ABCG2 transporter.
Collapse
Affiliation(s)
- Leli Zeng
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry
- School of Chemistry
- Sun Yat-Sen University
- Guangzhou 510275
- P. R. China
| | - Jia Li
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry
- School of Chemistry
- Sun Yat-Sen University
- Guangzhou 510275
- P. R. China
| | - Chen Zhang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry
- School of Chemistry
- Sun Yat-Sen University
- Guangzhou 510275
- P. R. China
| | - Yun-Kai Zhang
- College of Pharmacy and Health Sciences
- St. John's University
- New York
- USA
| | - Wei Zhang
- College of Pharmacy and Health Sciences
- St. John's University
- New York
- USA
- Institute of Plastic Surgery
| | - Juanjuan Huang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry
- School of Chemistry
- Sun Yat-Sen University
- Guangzhou 510275
- P. R. China
| | - Charles R. Ashby
- College of Pharmacy and Health Sciences
- St. John's University
- New York
- USA
| | - Zhe-Sheng Chen
- College of Pharmacy and Health Sciences
- St. John's University
- New York
- USA
| | - Hui Chao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry
- School of Chemistry
- Sun Yat-Sen University
- Guangzhou 510275
- P. R. China
| |
Collapse
|
6
|
Zeng L, Gupta P, Chen Y, Wang E, Ji L, Chao H, Chen ZS. The development of anticancer ruthenium(ii) complexes: from single molecule compounds to nanomaterials. Chem Soc Rev 2017; 46:5771-5804. [PMID: 28654103 PMCID: PMC5624840 DOI: 10.1039/c7cs00195a] [Citation(s) in RCA: 734] [Impact Index Per Article: 91.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Cancer is rapidly becoming the top killer in the world. Most of the FDA approved anticancer drugs are organic molecules, while metallodrugs are very scarce. The advent of the first metal based therapeutic agent, cisplatin, launched a new era in the application of transition metal complexes for therapeutic design. Due to their unique and versatile biochemical properties, ruthenium-based compounds have emerged as promising anti-cancer agents that serve as alternatives to cisplatin and its derivertives. Ruthenium(iii) complexes have successfully been used in clinical research and their mechanisms of anticancer action have been reported in large volumes over the past few decades. Ruthenium(ii) complexes have also attracted significant attention as anticancer candidates; however, only a few of them have been reported comprehensively. In this review, we discuss the development of ruthenium(ii) complexes as anticancer candidates and biocatalysts, including arene ruthenium complexes, polypyridyl ruthenium complexes, and ruthenium nanomaterial complexes. This review focuses on the likely mechanisms of action of ruthenium(ii)-based anticancer drugs and the relationship between their chemical structures and biological properties. This review also highlights the catalytic activity and the photoinduced activation of ruthenium(ii) complexes, their targeted delivery, and their activity in nanomaterial systems.
Collapse
Affiliation(s)
- Leli Zeng
- College of Pharmacy and Health Sciences, St. John's University, New York, NY 11439, USA.
| | | | | | | | | | | | | |
Collapse
|