1
|
Fedorov AS, Visotin MA, Lukyanenko AV, Gerasimov VS, Aleksandrovsky AS. Intense charge transfer plasmons in golden nanoparticle dimers connected by conductive molecular linkers. J Chem Phys 2024; 160:084110. [PMID: 38411236 DOI: 10.1063/5.0183334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 02/05/2024] [Indexed: 02/28/2024] Open
Abstract
Golden nanoparticle dimers connected by conjugated molecular linkers 1,2-bis(2-pyridyl)ethylene are produced. The formation of stable dimers with 22 nm diameter nanoparticles is confirmed by transmission electron microphotography. The possibility of charge transfer through the linkers between the particles in the dimers is shown by the density functional theory calculations. In addition to localized plasmon resonance of solitary nanoparticles with a wavelength of 530 nm, the optical spectra exhibit a new intense absorption peak in the near-infrared range with a wavelength of ∼780 nm. The emergent absorption peak is attributed to the charge-transfer plasmon (CTP) mode; the spectra simulated within the CTP developed model agree with the experimental ones. This resonant absorption may be of interest to biomedical applications due to its position in the so-called transmission window of biological tissues. The in vitro heating of CTP dimer solution by a laser diode with a wavelength of 792 nm proved the efficiency of CTP dimers for achieving a temperature increase of ΔT = 6 °C, which is sufficient for hyperthermia treatment of malignant tumors. This indicates the possibility of using hyperthermia to treat malignant tumors using the material we synthesized.
Collapse
Affiliation(s)
- A S Fedorov
- Kirensky Institute of Physics, Federal Research Center KSC SB RAS, 660036 Krasnoyarsk, Russia
- International Research Center of Spectroscopy and Quantum Chemistry - IRC SQC, Siberian Federal University, 660041 Krasnoyarsk, Russia
| | - M A Visotin
- Kirensky Institute of Physics, Federal Research Center KSC SB RAS, 660036 Krasnoyarsk, Russia
- Siberian Federal University, 660041 Krasnoyarsk, Russia
| | - A V Lukyanenko
- Kirensky Institute of Physics, Federal Research Center KSC SB RAS, 660036 Krasnoyarsk, Russia
- Siberian Federal University, 660041 Krasnoyarsk, Russia
| | - V S Gerasimov
- Institute of Computational Modeling, Federal Research Center KSC SB RAS, 660036 Krasnoyarsk, Russia
| | - A S Aleksandrovsky
- Kirensky Institute of Physics, Federal Research Center KSC SB RAS, 660036 Krasnoyarsk, Russia
- Siberian Federal University, 660041 Krasnoyarsk, Russia
| |
Collapse
|
2
|
Cao A, Tan J, Liu D, Chen Z, Dou L, Liu Z, Li Y. Mass-determining role in the electrophoretic separation of colloidal plasmonic nanoparticle oligomers. NANOSCALE 2022; 14:14161-14168. [PMID: 36111667 DOI: 10.1039/d2nr03585e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Gel electrophoresis techniques have been commonly applied in sieving plasmonic nanoparticle oligomers, while the intrinsic role in determining their phoresis velocity differences through the gel remains debatable. In this work, we explore the components and yield in each gel band after bundling two rationally designed types of nanoparticles in a system for electrophoretic separation. All results indicate that the mass property of plasmonic oligomers plays an essential role in determining their phoresis velocity divergences during separation. Further theoretical simulations reveal that the grounds for the mass-determining role stemmed from the random inelastic collisions among the oligomers and the gel-network microchannel. Moreover, under the guidance of such a mass-determining role, it is easy to achieve the direct electrophoretic separation of hetero-structured plasmonic dimers with high purity and high yield. This work will not only facilitate the precise nano-engineering of complex plasmonic oligomers with unique optical properties, but also might remove the obstacles toward their industrial manufacture with high purity.
Collapse
Affiliation(s)
- An Cao
- Key Lab of Materials Physics, Anhui Key Lab of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, P. R. China
- University of Science and Technology of China, Hefei 230026, P. R. China
| | - Jingyi Tan
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Dilong Liu
- Key Lab of Materials Physics, Anhui Key Lab of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, P. R. China
| | - Zhiming Chen
- Key Lab of Materials Physics, Anhui Key Lab of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, P. R. China
- University of Science and Technology of China, Hefei 230026, P. R. China
| | - Liguang Dou
- Beijing International S&T Cooperation Base for Plasma Science and Energy Conversion, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Zhiqiang Liu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China
| | - Yue Li
- Key Lab of Materials Physics, Anhui Key Lab of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, P. R. China
| |
Collapse
|
3
|
Lei P, Li Y, Song X, Hao Y, Deng Z. DNA‐Programmable AgAuS‐Primed Conductive Nanowelding Wires‐Up Wet Colloids. Angew Chem Int Ed Engl 2022; 61:e202203568. [DOI: 10.1002/anie.202203568] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Indexed: 12/11/2022]
Affiliation(s)
- Pengcheng Lei
- Center for Bioanalytical Chemistry Department of Chemistry University of Science and Technology of China Hefei Anhui 230026 China
| | - Yanjuan Li
- Center for Bioanalytical Chemistry Department of Chemistry University of Science and Technology of China Hefei Anhui 230026 China
| | - Xiaojun Song
- Center for Bioanalytical Chemistry Department of Chemistry University of Science and Technology of China Hefei Anhui 230026 China
| | - Yan Hao
- Center for Bioanalytical Chemistry Department of Chemistry University of Science and Technology of China Hefei Anhui 230026 China
| | - Zhaoxiang Deng
- Center for Bioanalytical Chemistry Department of Chemistry University of Science and Technology of China Hefei Anhui 230026 China
| |
Collapse
|
4
|
Lei P, Li Y, Song X, Hao Y, Deng Z. DNA‐Programmable AgAuS‐Primed Conductive Nanowelding Wires up Wet Colloids. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202203568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Pengcheng Lei
- University of Science and Technology of China Department of Chemistry CHINA
| | - Yanjuan Li
- University of Science and Technology of China Department of Chemistry CHINA
| | - Xiaojun Song
- University of Science and Technology of China Department of Chemistry CHINA
| | - Yan Hao
- University of Science and Technology of China Department of Chemistry CHINA
| | - Zhaoxiang Deng
- University of Science and Technology of China Department of Chemistry 96 Jinzhai Road 230026 Hefei CHINA
| |
Collapse
|
5
|
Tian L, Wang C, Zhao H, Sun F, Dong H, Feng K, Wang P, He G, Li G. Rational Approach to Plasmonic Dimers with Controlled Gap Distance, Symmetry, and Capability of Precisely Hosting Guest Molecules in Hotspot Regions. J Am Chem Soc 2021; 143:8631-8638. [PMID: 34077205 DOI: 10.1021/jacs.0c13377] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Plasmonic dimers not only provide a unique platform for studying fundamental plasmonic behavior and effects but also are functional materials for numerous applications. The efficient creation of well-defined dimers with flexible control of structure parameters and thus tunable optical property is the prerequisite for fully exploiting the potential of this nanostructure. Herein, based on a polymer-assisted self-assembly approach in conjugation with molecular cage chemistry, a strategy was demonstrated for constructing cage-bridged plasmonic dimers with controlled sizes, compositions, shape, symmetry, and interparticle gap separation in a modular and high-yield manner. With a high degree of freedom and controllability, this strategy allows facilely accessing various symmetrical/asymmetrical dimers with sub-5 nm gap distance and tailored optical properties. Importantly, as the linkage of the two constituent elements, the molecular cages embedded in the junction endow the assembled dimers with the ability to precisely and reversibly host rich guest molecules in hotspot regions, offering great potential for creating various plasmon-mediated applications.
Collapse
Affiliation(s)
- Li Tian
- Department of Chemistry, Key Lab of Organic Optoelectronics & Molecular Engineering, Tsinghua University, Beijing 100084, China
| | - Chen Wang
- Institute of Chemistry, Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Hongwei Zhao
- Department of Chemistry, Key Lab of Organic Optoelectronics & Molecular Engineering, Tsinghua University, Beijing 100084, China
| | - Fuwei Sun
- Department of Chemistry, Key Lab of Organic Optoelectronics & Molecular Engineering, Tsinghua University, Beijing 100084, China
| | - Hao Dong
- Department of Chemistry, Key Lab of Organic Optoelectronics & Molecular Engineering, Tsinghua University, Beijing 100084, China
| | - Kai Feng
- Department of Chemistry, Key Lab of Organic Optoelectronics & Molecular Engineering, Tsinghua University, Beijing 100084, China
| | - Peng Wang
- Department of Chemistry, Key Lab of Organic Optoelectronics & Molecular Engineering, Tsinghua University, Beijing 100084, China
| | - Guokang He
- Department of Chemistry, Key Lab of Organic Optoelectronics & Molecular Engineering, Tsinghua University, Beijing 100084, China
| | - Guangtao Li
- Department of Chemistry, Key Lab of Organic Optoelectronics & Molecular Engineering, Tsinghua University, Beijing 100084, China
| |
Collapse
|
6
|
Wang Y, Fang L, Gong M, Deng Z. Chemically modified nanofoci unifying plasmonics and catalysis. Chem Sci 2019; 10:5929-5934. [PMID: 31360398 PMCID: PMC6582755 DOI: 10.1039/c9sc00403c] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 05/03/2019] [Indexed: 12/20/2022] Open
Abstract
Chemical modifiability is achieved for self-assembled plasmonic nanogaps to enable charge transfer plasmon resonance and unified plasmonic and catalytic functions.
A plasmonic nanofocus, often in the form of a nanogap, is capable of concentrating light in a nanometric volume. The greatly enhanced electromagnetic field offers many opportunities in physics and chemistry. However, the lack of a method to fine-tune the chemical activities of the nanofocus has severely limited its application. Here we communicate an intriguing class of chemically modified nanofoci (CMNFs) that are able to address this challenge. Our results successfully demonstrate a possibility to functionalize the nanosized, mass-transport-restricted nanogap (nanofocus) of a dimeric gold nanoparticle assembly with homo-(Au) and heterogeneous (Ag, Pt, and Pd) materials. The as-produced structures with conductive Au and Ag junctions generate a novel form of charge transfer plasmon (CTP) with continuously tunable frequency covering the visible and near-infrared domains. In addition, the Ag materials can be displaced by catalytic Pt and Pd metals while still maintaining a tightly focused electromagnetic field. These hybrid structures with unified catalytic and plasmonic properties enable real-time, on-site probing of catalytic conversions at the nanofocus by plasmon-enhanced Raman scattering. The chemically/optically engineered CMNFs represent the simplest function-integrated nanodevices for plasmonics, sensing, and catalysis. Our work not only realizes chemical CTP reshaping, but also allows chemical functionalization into an intensified plasmonic near-field. The latter may enable unconventional chemical reactions driven by the catalytically functionalized, strongly boosted light field.
Collapse
Affiliation(s)
- Yueliang Wang
- CAS Key Laboratory of Soft Matter Chemistry , Hefei National Research Center for Physical Sciences at the Microscale , Department of Chemistry , University of Science and Technology of China , Hefei , Anhui 230026 , China .
| | - Lingling Fang
- CAS Key Laboratory of Soft Matter Chemistry , Hefei National Research Center for Physical Sciences at the Microscale , Department of Chemistry , University of Science and Technology of China , Hefei , Anhui 230026 , China .
| | - Ming Gong
- Engineering and Materials Science Experiment Center , University of Science and Technology of China , Hefei , Anhui 230027 , China
| | - Zhaoxiang Deng
- CAS Key Laboratory of Soft Matter Chemistry , Hefei National Research Center for Physical Sciences at the Microscale , Department of Chemistry , University of Science and Technology of China , Hefei , Anhui 230026 , China .
| |
Collapse
|
7
|
Feng J, Yang F, Wang X, Lyu F, Li Z, Yin Y. Self-Aligned Anisotropic Plasmonic Nanostructures. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1900789. [PMID: 30924976 DOI: 10.1002/adma.201900789] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 03/08/2019] [Indexed: 06/09/2023]
Abstract
Great opportunities emerge not only in the generation of anisotropic plasmonic nanostructures but also in controlling their orientation relative to incident light. Herein, a stepwise seeded growth method is reported for the synthesis of rod-shaped plasmon nanostructures which are vertically self-aligned with respect to the surface of colloidal substrates. Anisotropic growth of metal nanostructure is achieved by depositing metal seeds onto the surface of colloidal substrates and then selectively passivating the seed surface to induce symmetry breaking in the subsequent seed-mediated growth process. The versatility of this method is demonstrated by producing nanoparticle dimers and linear trimers of Au, Au-Ag, Au-Pd, and Au-Cu2 O. Further, this unique method enables the automatic vertical alignment of the resulting plasmonic nanostructures to the surface of the colloidal substrate, thereby making it possible to design magnetic/plasmonic nanocomposites that allow the dynamic tuning of the plasmon excitation by controlling their orientation using an external magnetic field. The controlled anisotropic growth of colloidal plasmonic nanostructures and their dynamic modulation of plasmon excitation further allow them to be conveniently fixed in a thin polymer film with a well-controlled orientation to display polarization-dependent patterns that may find important applications in information encryption.
Collapse
Affiliation(s)
- Ji Feng
- Department of Chemistry, University of California, Riverside, CA, 92521, USA
| | - Fan Yang
- Department of Chemistry, University of California, Riverside, CA, 92521, USA
| | - Xiaojing Wang
- Materials Science and Engineering Program, University of California, Riverside, CA, 92521, USA
| | - Fenglei Lyu
- Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu, 215123, China
| | - Zhiwei Li
- Department of Chemistry, University of California, Riverside, CA, 92521, USA
| | - Yadong Yin
- Department of Chemistry, University of California, Riverside, CA, 92521, USA
- Materials Science and Engineering Program, University of California, Riverside, CA, 92521, USA
| |
Collapse
|
8
|
Xu G, Yan Q, Lv X, Zhu Y, Xin K, Shi B, Wang R, Chen J, Gao W, Shi P, Fan C, Zhao C, Tian H. Imaging of Colorectal Cancers Using Activatable Nanoprobes with Second Near-Infrared Window Emission. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201712528] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Ge Xu
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals; School of Chemistry and Molecular Engineering; East China University of Science and Technology; Shanghai 200237 P. R. China
| | - Qinglong Yan
- Division of Physical Biology & Bioimaging Center; Shanghai Institute of Applied Physics; Chinese Academy of Sciences; Shanghai 201800 P. R. China
| | - Xiaoguang Lv
- State Key Laboratory of Bioreactor Engineering; East China University of Science and Technology; Shanghai 200237 P. R. China
| | - Ying Zhu
- Division of Physical Biology & Bioimaging Center; Shanghai Institute of Applied Physics; Chinese Academy of Sciences; Shanghai 201800 P. R. China
| | - Kai Xin
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals; School of Chemistry and Molecular Engineering; East China University of Science and Technology; Shanghai 200237 P. R. China
| | - Ben Shi
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals; School of Chemistry and Molecular Engineering; East China University of Science and Technology; Shanghai 200237 P. R. China
| | - Rongchen Wang
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals; School of Chemistry and Molecular Engineering; East China University of Science and Technology; Shanghai 200237 P. R. China
| | - Jian Chen
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals; School of Chemistry and Molecular Engineering; East China University of Science and Technology; Shanghai 200237 P. R. China
| | - Wei Gao
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals; School of Chemistry and Molecular Engineering; East China University of Science and Technology; Shanghai 200237 P. R. China
| | - Ping Shi
- State Key Laboratory of Bioreactor Engineering; East China University of Science and Technology; Shanghai 200237 P. R. China
| | - Chunhai Fan
- Division of Physical Biology & Bioimaging Center; Shanghai Institute of Applied Physics; Chinese Academy of Sciences; Shanghai 201800 P. R. China
| | - Chunchang Zhao
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals; School of Chemistry and Molecular Engineering; East China University of Science and Technology; Shanghai 200237 P. R. China
| | - He Tian
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals; School of Chemistry and Molecular Engineering; East China University of Science and Technology; Shanghai 200237 P. R. China
| |
Collapse
|
9
|
Xu G, Yan Q, Lv X, Zhu Y, Xin K, Shi B, Wang R, Chen J, Gao W, Shi P, Fan C, Zhao C, Tian H. Imaging of Colorectal Cancers Using Activatable Nanoprobes with Second Near-Infrared Window Emission. Angew Chem Int Ed Engl 2018; 57:3626-3630. [DOI: 10.1002/anie.201712528] [Citation(s) in RCA: 210] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 01/17/2018] [Indexed: 12/20/2022]
Affiliation(s)
- Ge Xu
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals; School of Chemistry and Molecular Engineering; East China University of Science and Technology; Shanghai 200237 P. R. China
| | - Qinglong Yan
- Division of Physical Biology & Bioimaging Center; Shanghai Institute of Applied Physics; Chinese Academy of Sciences; Shanghai 201800 P. R. China
| | - Xiaoguang Lv
- State Key Laboratory of Bioreactor Engineering; East China University of Science and Technology; Shanghai 200237 P. R. China
| | - Ying Zhu
- Division of Physical Biology & Bioimaging Center; Shanghai Institute of Applied Physics; Chinese Academy of Sciences; Shanghai 201800 P. R. China
| | - Kai Xin
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals; School of Chemistry and Molecular Engineering; East China University of Science and Technology; Shanghai 200237 P. R. China
| | - Ben Shi
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals; School of Chemistry and Molecular Engineering; East China University of Science and Technology; Shanghai 200237 P. R. China
| | - Rongchen Wang
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals; School of Chemistry and Molecular Engineering; East China University of Science and Technology; Shanghai 200237 P. R. China
| | - Jian Chen
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals; School of Chemistry and Molecular Engineering; East China University of Science and Technology; Shanghai 200237 P. R. China
| | - Wei Gao
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals; School of Chemistry and Molecular Engineering; East China University of Science and Technology; Shanghai 200237 P. R. China
| | - Ping Shi
- State Key Laboratory of Bioreactor Engineering; East China University of Science and Technology; Shanghai 200237 P. R. China
| | - Chunhai Fan
- Division of Physical Biology & Bioimaging Center; Shanghai Institute of Applied Physics; Chinese Academy of Sciences; Shanghai 201800 P. R. China
| | - Chunchang Zhao
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals; School of Chemistry and Molecular Engineering; East China University of Science and Technology; Shanghai 200237 P. R. China
| | - He Tian
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals; School of Chemistry and Molecular Engineering; East China University of Science and Technology; Shanghai 200237 P. R. China
| |
Collapse
|