1
|
Discovering and Targeting Dynamic Drugging Pockets of Oncogenic Proteins: The Role of Magnesium in Conformational Changes of the G12D Mutated Kirsten Rat Sarcoma-Guanosine Diphosphate Complex. Int J Mol Sci 2022; 23:ijms232213865. [PMID: 36430338 PMCID: PMC9692486 DOI: 10.3390/ijms232213865] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/02/2022] [Accepted: 11/07/2022] [Indexed: 11/12/2022] Open
Abstract
KRAS-G12D mutations are the one of most frequent oncogenic drivers in human cancers. Unfortunately, no therapeutic agent directly targeting KRAS-G12D has been clinically approved yet, with such mutated species remaining undrugged. Notably, cofactor Mg2+ is closely related to the function of small GTPases, but no investigation has been conducted yet on Mg2+ when associated with KRAS. Herein, through microsecond scale molecular dynamics simulations, we found that Mg2+ plays a crucial role in the conformational changes of the KRAS-GDP complex. We located two brand new druggable dynamic pockets exclusive to KRAS-G12D. Using the structural characteristics of these two dynamic pockets, we designed in silico the inhibitor DBD15-21-22, which can specifically and tightly target the KRAS-G12D-GDP-Mg2+ ternary complex. Overall, we provide two brand new druggable pockets located on KRAS-G12D and suitable strategies for its inhibition.
Collapse
|
2
|
Chen X, Gao H, Long D. Millisecond Allosteric Dynamics of Activated Ras Reproduced with a Slowly Hydrolyzable GTP Analogue. Chembiochem 2020; 22:1079-1083. [PMID: 33140496 DOI: 10.1002/cbic.202000698] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 11/01/2020] [Indexed: 12/29/2022]
Abstract
The millisecond timescale dynamics of activated Ras transiently sample a low-populated conformational state that has distinct surface property from the major state and represents a promising target for binding of small-molecule compounds. To avoid the complications of hydrolysis, dynamics and other properties of active Ras have so far been routinely investigated by using non-hydrolyzable GTP analogues, which, however, were previously reported to alter both the kinetics and distribution of the conformational exchange. In this study, we quantitatively measured and validated the internal dynamics of Ras complexed with a slowly hydrolyzable GTP analogue, GTPγS, which increases the lifetime of active Ras by 23 times relative to that of native GTP. It was found that GTPγS, in addition to its better mimicking of the exchange kinetics than the commonly used non-hydrolyzable analogues GppNHp and GppCH2 p, can rigorously reproduce the natural dynamics network in active Ras, thus indicating its fitness for use in the development of allosteric inhibitors.
Collapse
Affiliation(s)
- Xiaomin Chen
- Hefei National Laboratory for Physical Sciences at the Microscale, MOE Key Laboratory for Membraneless Organelles & Cellular Dynamics, and School of Life Sciences, University of Science and Technology of China, 443 Huangshan Street, Hefei, Anhui, 230027, P. R. China
| | - Hexuan Gao
- Hefei National Laboratory for Physical Sciences at the Microscale, MOE Key Laboratory for Membraneless Organelles & Cellular Dynamics, and School of Life Sciences, University of Science and Technology of China, 443 Huangshan Street, Hefei, Anhui, 230027, P. R. China
| | - Dong Long
- Hefei National Laboratory for Physical Sciences at the Microscale, MOE Key Laboratory for Membraneless Organelles & Cellular Dynamics, and School of Life Sciences, University of Science and Technology of China, 443 Huangshan Street, Hefei, Anhui, 230027, P. R. China.,Department of Chemistry, University of Science and Technology of China Hefei, Anhui 230026, P. R. China
| |
Collapse
|
3
|
Chen X, Yao H, Wang H, Mao Y, Liu D, Long D. Extending the Lifetime of Native GTP‐Bound Ras for Site‐Resolved NMR Measurements: Quantifying the Allosteric Dynamics. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201812902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Xiaomin Chen
- Hefei National Laboratory for Physical Sciences at the Microscale & School of Life SciencesUniversity of Science and Technology of China 443 Huangshan Street Hefei Anhui 230027 China
| | - Haijie Yao
- Hefei National Laboratory for Physical Sciences at the Microscale & School of Life SciencesUniversity of Science and Technology of China 443 Huangshan Street Hefei Anhui 230027 China
| | - Hui Wang
- Hefei National Laboratory for Physical Sciences at the Microscale & School of Life SciencesUniversity of Science and Technology of China 443 Huangshan Street Hefei Anhui 230027 China
| | - Yunyun Mao
- Hefei National Laboratory for Physical Sciences at the Microscale & School of Life SciencesUniversity of Science and Technology of China 443 Huangshan Street Hefei Anhui 230027 China
| | - Dan Liu
- Hefei National Laboratory for Physical Sciences at the Microscale & School of Life SciencesUniversity of Science and Technology of China 443 Huangshan Street Hefei Anhui 230027 China
| | - Dong Long
- Hefei National Laboratory for Physical Sciences at the Microscale & School of Life SciencesUniversity of Science and Technology of China 443 Huangshan Street Hefei Anhui 230027 China
- Department of ChemistryUniversity of Science and Technology of China Hefei Anhui China
| |
Collapse
|
4
|
Chen X, Yao H, Wang H, Mao Y, Liu D, Long D. Extending the Lifetime of Native GTP-Bound Ras for Site-Resolved NMR Measurements: Quantifying the Allosteric Dynamics. Angew Chem Int Ed Engl 2019; 58:2730-2733. [PMID: 30681242 DOI: 10.1002/anie.201812902] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Indexed: 12/18/2022]
Abstract
Characterization of native GTP-bound Ras is important for an appreciation of its cellular signaling and for the design of inhibitors, which however has been depressed by its intrinsic instability. Herein, an effective approach for extending the lifetime of Ras⋅GTP samples by exploiting the active role of Son of Sevenless (Sos) is demonstrated that sustains the activated state of Ras. This approach, combined with a postprocessing method that suppresses residual Ras⋅GDP signals, is applied to the site-resolved NMR measurement of the allosteric dynamics of Ras⋅GTP. The observed network of concerted motions well covers the recently identified allosteric inhibitor-binding pockets, but the motions are more confined than those of Ras⋅GppNHp, advocating the use of native GTP for development of allosteric inhibitors. The Sos-based approach is anticipated to generally facilitate experiments on active Ras when native GTP is preferred.
Collapse
Affiliation(s)
- Xiaomin Chen
- Hefei National Laboratory for Physical Sciences at the Microscale & School of Life Sciences, University of Science and Technology of China, 443 Huangshan Street, Hefei, Anhui, 230027, China
| | - Haijie Yao
- Hefei National Laboratory for Physical Sciences at the Microscale & School of Life Sciences, University of Science and Technology of China, 443 Huangshan Street, Hefei, Anhui, 230027, China
| | - Hui Wang
- Hefei National Laboratory for Physical Sciences at the Microscale & School of Life Sciences, University of Science and Technology of China, 443 Huangshan Street, Hefei, Anhui, 230027, China
| | - Yunyun Mao
- Hefei National Laboratory for Physical Sciences at the Microscale & School of Life Sciences, University of Science and Technology of China, 443 Huangshan Street, Hefei, Anhui, 230027, China
| | - Dan Liu
- Hefei National Laboratory for Physical Sciences at the Microscale & School of Life Sciences, University of Science and Technology of China, 443 Huangshan Street, Hefei, Anhui, 230027, China
| | - Dong Long
- Hefei National Laboratory for Physical Sciences at the Microscale & School of Life Sciences, University of Science and Technology of China, 443 Huangshan Street, Hefei, Anhui, 230027, China.,Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, China
| |
Collapse
|