1
|
Kirschning A. Why pyridoxal phosphate could be a functional predecessor of thiamine pyrophosphate and speculations on a primordial metabolism. RSC Chem Biol 2024; 5:508-517. [PMID: 38846080 PMCID: PMC11151856 DOI: 10.1039/d4cb00016a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 04/15/2024] [Indexed: 06/09/2024] Open
Abstract
The account attempts to substantiate the hypothesis that, from an evolutionary perspective, the coenzyme couple pyridoxal phosphate and pyridoxamine phosphate preceded the coenzyme thiamine pyrophosphate and acted as its less efficient chemical analogue in some form of early metabolism. The analysis combines mechanism-based chemical reactivity with biosynthetic arguments and provides evidence that vestiges of "TPP-like reactivity" are still found for PLP today. From these thoughts, conclusions can be drawn about the key elements of a primordial form of metabolism, which includes the citric acid cycle, amino acid biosynthesis and the pentose phosphate pathway.
Collapse
Affiliation(s)
- Andreas Kirschning
- Institute of Organic Chemistry, Leibniz University Hannover, Schneiderberg 1B 30167 Hannover Germany
- Uppsala Biomedical Center (BMC), University Uppsala, Husargatan 3 752 37 Uppsala Sweden
| |
Collapse
|
2
|
He X, Ren J, Wang L, Luo J, Yang J, Gu YC, Yan Y, Huang SX. Discovery and Biosynthetic Origin of Quinolizidomycins A and B, Two Quinolizidine Alkaloids from Streptomyces sp. KIB-1714. Org Lett 2023; 25:1760-1764. [PMID: 36867548 DOI: 10.1021/acs.orglett.3c00478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Abstract
Quinolizidomycins A (1) and B (2), two unprecedented quinolizidine alkaloids featuring a tricyclic 6/6/5 ring system, were isolated from Streptomyces sp. KIB-1714. Their structures were assigned by detailed spectroscopic data analyses and X-ray diffraction. Stable isotope labeling experiments suggested that compounds 1 and 2 are derived from lysine, ribose 5-phosphate, and acetate units, which indicates an unprecedented manner of assembly of the quinolizidine (1-azabicyclo[4.4.0]decane) scaffold in quinolizidomycin biosynthesis. Quinolizidomycin A (1) was active in an acetylcholinesterase inhibitory assay.
Collapse
Affiliation(s)
- Xin He
- State Key Laboratory of Phytochemistry and Plant Resources in West China and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China.,University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Jinqiu Ren
- State Key Laboratory of Phytochemistry and Plant Resources in West China and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China.,University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Li Wang
- State Key Laboratory of Phytochemistry and Plant Resources in West China and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China
| | - Jianying Luo
- State Key Laboratory of Phytochemistry and Plant Resources in West China and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China.,University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Jing Yang
- State Key Laboratory of Phytochemistry and Plant Resources in West China and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China
| | - Yu-Cheng Gu
- Syngenta Jealott's Hill International Research Centre, Bracknell, Berkshire RG42 6EY, U.K
| | - Yijun Yan
- State Key Laboratory of Phytochemistry and Plant Resources in West China and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China
| | - Sheng-Xiong Huang
- State Key Laboratory of Phytochemistry and Plant Resources in West China and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China
| |
Collapse
|
3
|
Ogasawara Y, Dairi T. Biosynthesis of Oligopeptides Using ATP-Grasp Enzymes. Chemistry 2017; 23:10714-10724. [PMID: 28488371 DOI: 10.1002/chem.201700674] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Indexed: 11/08/2022]
Abstract
Peptides are biologically occurring oligomers of amino acids linked by amide bonds and are indispensable for all living organisms. Many bioactive peptides are used as antibiotics, antivirus agents, insecticides, pheromones, and food preservatives. Nature employs several different strategies to form amide bonds. ATP-grasp enzymes that catalyze amide bond formation (ATP-dependent carboxylate-amine ligases) utilize a strategy of activating carboxylic acid as an acylphosphate intermediate to form amide bonds and are involved in many different biological processes in both primary and secondary metabolisms. The recent discovery of several new ATP-dependent carboxylate-amine ligases has expanded the diversity of this group of enzymes and showed their usefulness for generating oligopeptides. In this review, an overview of findings on amide bond formation catalyzed by ATP-grasp enzymes in the past decade is presented.
Collapse
Affiliation(s)
- Yasushi Ogasawara
- Division of Applied Chemistry, Graduate School of Engineering, Hokkaido University, Sapporo, Hokkaido, 060-8628, Japan
| | - Tohru Dairi
- Division of Applied Chemistry, Graduate School of Engineering, Hokkaido University, Sapporo, Hokkaido, 060-8628, Japan
| |
Collapse
|