1
|
Cai Y, Luo YH, Long X, Roldan MA, Yang S, Zhou C, Zhou D, Rittmann BE. Reductive Dehalogenation of Herbicides Catalyzed by Pd 0NPs in a H 2-Based Membrane Catalyst-Film Reactor. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:18030-18040. [PMID: 36383359 DOI: 10.1021/acs.est.2c07317] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
More food production required to feed humans will require intensive use of herbicides to protect against weeds. The widespread application and persistence of herbicides pose environmental risks for nontarget species. Elemental-palladium nanoparticles (Pd0NPs) are known to catalyze reductive dehalogenation of halogenated organic pollutants. In this study, the reductive conversion of 2,4-dichlorophenoxyacetic acid (2,4-D) was evaluated in a H2-based membrane catalyst-film reactor (H2-MCfR), in which Pd0NPs were in situ-synthesized as the catalyst film and used to activate H2 on the surface of H2-delivery membranes. Batch kinetic experiments showed that 99% of 2,4-D was removed and converted to phenoxyacetic acid (POA) within 90 min with a Pd0 surface loading of 20 mg Pd/m2, achieving a catalyst specific activity of 6.6 ± 0.5 L/g-Pd-min. Continuous operation of the H2-MCfR loaded with 20 mg Pd/m2 sustained >99% removal of 50 μM 2,4-D for 20 days. A higher Pd0 surface loading, 1030 mg Pd/m2, also enabled hydrosaturation and hydrolysis of POA to cyclohexanone and glycolic acid. Density functional theory identified the reaction mechanisms and pathways, which involved reductive hydrodechlorination, hydrosaturation, and hydrolysis. Molecular electrostatic potential calculations and Fukui indices suggested that reductive dehalogenation could increase the bioavailability of herbicides. Furthermore, three other halogenated herbicides─atrazine, dicamba, and bromoxynil─were reductively dehalogenated in the H2-MCfR. This study documents a promising method for the removal and detoxification of halogenated herbicides in aqueous environments.
Collapse
Affiliation(s)
- Yuhang Cai
- Engineering Lab for Water Pollution Control and Resources Recovery of Jilin Province, School of Environment, Northeast Normal University, Changchun130117, China
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, Arizona85287-5701, United States
| | - Yi-Hao Luo
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, Arizona85287-5701, United States
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, Arizona85287-3005, United States
| | - Xiangxing Long
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, Arizona85287-5701, United States
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, Arizona85287-3005, United States
| | - Manuel A Roldan
- Eyring Materials Center, Arizona State University, Tempe,Arizona85287-3005, United States
| | - Shize Yang
- Eyring Materials Center, Arizona State University, Tempe,Arizona85287-3005, United States
| | - Chen Zhou
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, Arizona85287-5701, United States
| | - Dandan Zhou
- Engineering Lab for Water Pollution Control and Resources Recovery of Jilin Province, School of Environment, Northeast Normal University, Changchun130117, China
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, Arizona85287-5701, United States
| | - Bruce E Rittmann
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, Arizona85287-5701, United States
| |
Collapse
|
2
|
Schmid J, Wang M, Gutiérrez OY, Bullock RM, Camaioni DM, Lercher JA. Controlling Reaction Routes in Noble‐Metal‐Catalyzed Conversion of Aryl Ethers. Angew Chem Int Ed Engl 2022; 61:e202203172. [PMID: 35482977 PMCID: PMC9400965 DOI: 10.1002/anie.202203172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Indexed: 11/12/2022]
Affiliation(s)
- Julian Schmid
- Institute for Integrated Catalysis Pacific Northwest National Laboratory (PNNL) P.O. Box 999 Richland WA 99352 USA
| | - Meng Wang
- Institute for Integrated Catalysis Pacific Northwest National Laboratory (PNNL) P.O. Box 999 Richland WA 99352 USA
| | - Oliver Y. Gutiérrez
- Institute for Integrated Catalysis Pacific Northwest National Laboratory (PNNL) P.O. Box 999 Richland WA 99352 USA
| | - R. Morris Bullock
- Institute for Integrated Catalysis Pacific Northwest National Laboratory (PNNL) P.O. Box 999 Richland WA 99352 USA
| | - Donald M. Camaioni
- Institute for Integrated Catalysis Pacific Northwest National Laboratory (PNNL) P.O. Box 999 Richland WA 99352 USA
| | - Johannes A. Lercher
- Institute for Integrated Catalysis Pacific Northwest National Laboratory (PNNL) P.O. Box 999 Richland WA 99352 USA
- Department of Chemistry and Catalysis Research Institute Technische Universität München Lichtenbergstrasse 4 85748 Garching Germany
| |
Collapse
|
3
|
Schmid J, Wang M, Gutiérrez OY, Bullock RM, Camaioni DM, Lercher J. Controlling Reaction Routes in Noble‐Metal‐Catalyzed Conversion of Aryl Ethers. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202203172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Julian Schmid
- Pacific Northwest National Laboratory Institute for Integrated Catalysis UNITED STATES
| | - Meng Wang
- Pacific Northwest National Laboratory Institute for Integrated Catalysis UNITED STATES
| | - Oliver Y. Gutiérrez
- Pacific Northwest National Laboratory Institute for Integrated Catalysis UNITED STATES
| | - R. Morris Bullock
- Pacific Northwest National Laboratory Institute for Integrated Catalysis UNITED STATES
| | - Donald M. Camaioni
- Pacific Northwest National Laboratory Institute for Integrated Catalysis UNITED STATES
| | - Johannes Lercher
- Technische Universität München Department Chemie Lichtenbergstrasse 4 85748 Garching GERMANY
| |
Collapse
|
4
|
Han Q, Wang H, Rehman MU, Shang X, Chen H, Ji N, Tong X, Shi H, Zhao Y. Improved Hydrodeoxygenation of Phenol to Cyclohexane on NiFe Alloy Catalysts Derived from Phyllosilicates. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202100805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Qiao Han
- Key Laboratory for Green Chemical Technology of Ministry of Education Collaborative Innovation Centre of Chemical Science and Engineering School of Chemical Engineering and Technology Tianjin University Tianjin 300072 P.R. China
| | - Hui Wang
- Key Laboratory for Green Chemical Technology of Ministry of Education Collaborative Innovation Centre of Chemical Science and Engineering School of Chemical Engineering and Technology Tianjin University Tianjin 300072 P.R. China
| | - Mooeez Ur Rehman
- Key Laboratory for Green Chemical Technology of Ministry of Education Collaborative Innovation Centre of Chemical Science and Engineering School of Chemical Engineering and Technology Tianjin University Tianjin 300072 P.R. China
| | - Xin Shang
- Key Laboratory for Green Chemical Technology of Ministry of Education Collaborative Innovation Centre of Chemical Science and Engineering School of Chemical Engineering and Technology Tianjin University Tianjin 300072 P.R. China
| | - Haijun Chen
- College of Electronic Information and Optical Engineering Nankai University Tianjin 300350 P.R. China
| | - Na Ji
- Tianjin Key Laboratory of Indoor Air Environmental Quality Control School of Environmental Science and Engineering Tianjin University Tianjin 300350 P.R. China
| | - Xinli Tong
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion School of Chemistry and Chemical Engineering Tianjin University of Technology Tianjin 300384 P.R. China
| | - Hui Shi
- Department of Chemistry and Catalysis Research Center TU München Garching 85748 Germany
| | - Yujun Zhao
- Key Laboratory for Green Chemical Technology of Ministry of Education Collaborative Innovation Centre of Chemical Science and Engineering School of Chemical Engineering and Technology Tianjin University Tianjin 300072 P.R. China
| |
Collapse
|
5
|
Zhang H, Fu S, Du X, Deng Y. Advances in Versatile Nanoscale Catalyst for the Reductive Catalytic Fractionation of Lignin. CHEMSUSCHEM 2021; 14:2268-2294. [PMID: 33811470 DOI: 10.1002/cssc.202100067] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 03/15/2021] [Indexed: 06/12/2023]
Abstract
In the past five years, biomass-derived biofuels and biochemicals were widely studied both in academia and industry as promising alternatives to petroleum. In this Review, the latest progress of the synthesis and fabrication of porous nanocatalysts that are used in catalytic transformations involving hydrogenolysis of lignin is reviewed in terms of their textural properties, catalytic activities, and stabilities. A particular emphasis is made with regard to the catalyst design for the hydrogenolysis of lignin and/or lignin model compounds. Furthermore, the effects of different supports on the lignin hydrogenolysis/hydrogenation are discussed in detail. Finally, the challenges and future opportunities of lignin hydrogenolysis over nanomaterial-supported catalysts are also presented.
Collapse
Affiliation(s)
- Haichuan Zhang
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, 510640, Guangdong, P. R. China
- School of Chemical & Biomolecular Engineering and RBI at Georgia Tech, Georgia Institute of Technology, 500 10th Street N.W., Atlanta, GA 30332-0620, USA
| | - Shiyu Fu
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, 510640, Guangdong, P. R. China
| | - Xu Du
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory (NREL), Golden, CO 80401, USA
| | - Yulin Deng
- School of Chemical & Biomolecular Engineering and RBI at Georgia Tech, Georgia Institute of Technology, 500 10th Street N.W., Atlanta, GA 30332-0620, USA
| |
Collapse
|
6
|
Wu D, Wang Q, Safonova OV, Peron DV, Zhou W, Yan Z, Marinova M, Khodakov AY, Ordomsky VV. Lignin Compounds to Monoaromatics: Selective Cleavage of C-O Bonds over a Brominated Ruthenium Catalyst. Angew Chem Int Ed Engl 2021; 60:12513-12523. [PMID: 33730419 DOI: 10.1002/anie.202101325] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Indexed: 11/09/2022]
Abstract
The cleavage of C-O linkages in aryl ethers in biomass-derived lignin compounds without hydrogenation of the aromatic rings is a major challenge for the production of sustainable mono-aromatics. Conventional strategies over the heterogeneous metal catalysts require the addition of homogeneous base additives causing environmental problems. Herein, we propose a heterogeneous Ru/C catalyst modified by Br atoms for the selective direct cleavage of C-O bonds in diphenyl ether without hydrogenation of aromatic rings reaching the yield of benzene and phenol as high as 90.3 % and increased selectivity to mono-aromatics (97.3 vs. 46.2 % for initial Ru) during depolymerization of lignin. Characterization of the catalyst indicates selective poisoning by Br of terrace sites over Ru nanoparticles, which are active in the hydrogenation of aromatic rings, while the defect sites on the edges and corners remain available and provide higher intrinsic activity in the C-O bond cleavage.
Collapse
Affiliation(s)
- Dan Wu
- Eco-Efficient Products and Processes Laboratory (E2P2L), UMI 3464, CNRS-Solvay, 201108, Shanghai, P. R. China.,Univ. Lille, CNRS, Centrale Lille, ENSCL, Univ. Artois, UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide, 59000, Lille, France
| | - Qiyan Wang
- Eco-Efficient Products and Processes Laboratory (E2P2L), UMI 3464, CNRS-Solvay, 201108, Shanghai, P. R. China.,Univ. Lille, CNRS, Centrale Lille, ENSCL, Univ. Artois, UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide, 59000, Lille, France
| | | | - Deizi V Peron
- Univ. Lille, CNRS, Centrale Lille, ENSCL, Univ. Artois, UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide, 59000, Lille, France
| | - Wenjuan Zhou
- Eco-Efficient Products and Processes Laboratory (E2P2L), UMI 3464, CNRS-Solvay, 201108, Shanghai, P. R. China
| | - Zhen Yan
- Eco-Efficient Products and Processes Laboratory (E2P2L), UMI 3464, CNRS-Solvay, 201108, Shanghai, P. R. China
| | - Maya Marinova
- Univ. Lille, CNRS, INRAE, Centrale Lille, Univ. Artois, FR 2638 - IMEC - Institut Michel-Eugène Chevreul, 59000, Lille, France
| | - Andrei Y Khodakov
- Univ. Lille, CNRS, Centrale Lille, ENSCL, Univ. Artois, UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide, 59000, Lille, France
| | - Vitaly V Ordomsky
- Univ. Lille, CNRS, Centrale Lille, ENSCL, Univ. Artois, UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide, 59000, Lille, France
| |
Collapse
|
7
|
Wu D, Wang Q, Safonova OV, Peron DV, Zhou W, Yan Z, Marinova M, Khodakov AY, Ordomsky VV. Lignin Compounds to Monoaromatics: Selective Cleavage of C−O Bonds over a Brominated Ruthenium Catalyst. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202101325] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Dan Wu
- Eco-Efficient Products and Processes Laboratory (E2P2L) UMI 3464 CNRS-Solvay 201108 Shanghai P. R. China
- Univ. Lille CNRS Centrale Lille ENSCL Univ. Artois UMR 8181 – UCCS – Unité de Catalyse et Chimie du Solide 59000 Lille France
| | - Qiyan Wang
- Eco-Efficient Products and Processes Laboratory (E2P2L) UMI 3464 CNRS-Solvay 201108 Shanghai P. R. China
- Univ. Lille CNRS Centrale Lille ENSCL Univ. Artois UMR 8181 – UCCS – Unité de Catalyse et Chimie du Solide 59000 Lille France
| | | | - Deizi V. Peron
- Univ. Lille CNRS Centrale Lille ENSCL Univ. Artois UMR 8181 – UCCS – Unité de Catalyse et Chimie du Solide 59000 Lille France
| | - Wenjuan Zhou
- Eco-Efficient Products and Processes Laboratory (E2P2L) UMI 3464 CNRS-Solvay 201108 Shanghai P. R. China
| | - Zhen Yan
- Eco-Efficient Products and Processes Laboratory (E2P2L) UMI 3464 CNRS-Solvay 201108 Shanghai P. R. China
| | - Maya Marinova
- Univ. Lille CNRS INRAE Centrale Lille Univ. Artois FR 2638 – IMEC – Institut Michel-Eugène Chevreul 59000 Lille France
| | - Andrei Y. Khodakov
- Univ. Lille CNRS Centrale Lille ENSCL Univ. Artois UMR 8181 – UCCS – Unité de Catalyse et Chimie du Solide 59000 Lille France
| | - Vitaly V. Ordomsky
- Univ. Lille CNRS Centrale Lille ENSCL Univ. Artois UMR 8181 – UCCS – Unité de Catalyse et Chimie du Solide 59000 Lille France
| |
Collapse
|
8
|
Sanyal U, Yuk SF, Koh K, Lee M, Stoerzinger K, Zhang D, Meyer LC, Lopez‐Ruiz JA, Karkamkar A, Holladay JD, Camaioni DM, Nguyen M, Glezakou V, Rousseau R, Gutiérrez OY, Lercher JA. Hydrogen Bonding Enhances the Electrochemical Hydrogenation of Benzaldehyde in the Aqueous Phase. Angew Chem Int Ed Engl 2021; 60:290-296. [PMID: 32770641 PMCID: PMC7821193 DOI: 10.1002/anie.202008178] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/27/2020] [Indexed: 11/11/2022]
Abstract
The hydrogenation of benzaldehyde to benzyl alcohol on carbon-supported metals in water, enabled by an external potential, is markedly promoted by polarization of the functional groups. The presence of polar co-adsorbates, such as substituted phenols, enhances the hydrogenation rate of the aldehyde by two effects, that is, polarizing the carbonyl group and increasing the probability of forming a transition state for H addition. These two effects enable a hydrogenation route, in which phenol acts as a conduit for proton addition, with a higher rate than the direct proton transfer from hydronium ions. The fast hydrogenation enabled by the presence of phenol and applied potential overcompensates for the decrease in coverage of benzaldehyde caused by competitive adsorption. A higher acid strength of the co-adsorbate increases the intensity of interactions and the rates of selective carbonyl reduction.
Collapse
Affiliation(s)
- Udishnu Sanyal
- Institute for Integrated CatalysisPacific Northwest National LaboratoryP.O. Box 999RichlandWA99352USA
| | - Simuck F. Yuk
- Institute for Integrated CatalysisPacific Northwest National LaboratoryP.O. Box 999RichlandWA99352USA
| | - Katherine Koh
- Institute for Integrated CatalysisPacific Northwest National LaboratoryP.O. Box 999RichlandWA99352USA
| | - Mal‐Soon Lee
- Institute for Integrated CatalysisPacific Northwest National LaboratoryP.O. Box 999RichlandWA99352USA
| | - Kelsey Stoerzinger
- Institute for Integrated CatalysisPacific Northwest National LaboratoryP.O. Box 999RichlandWA99352USA
- School of Chemical, Biological and Environmental EngineeringOregon State UniversityCorvallisOR97331USA
| | - Difan Zhang
- Institute for Integrated CatalysisPacific Northwest National LaboratoryP.O. Box 999RichlandWA99352USA
| | - Laura C. Meyer
- Institute for Integrated CatalysisPacific Northwest National LaboratoryP.O. Box 999RichlandWA99352USA
| | - Juan A. Lopez‐Ruiz
- Institute for Integrated CatalysisPacific Northwest National LaboratoryP.O. Box 999RichlandWA99352USA
| | - Abhi Karkamkar
- Institute for Integrated CatalysisPacific Northwest National LaboratoryP.O. Box 999RichlandWA99352USA
| | - Jamie D. Holladay
- Institute for Integrated CatalysisPacific Northwest National LaboratoryP.O. Box 999RichlandWA99352USA
| | - Donald M. Camaioni
- Institute for Integrated CatalysisPacific Northwest National LaboratoryP.O. Box 999RichlandWA99352USA
| | - Manh‐Thuong Nguyen
- Institute for Integrated CatalysisPacific Northwest National LaboratoryP.O. Box 999RichlandWA99352USA
| | | | - Roger Rousseau
- Institute for Integrated CatalysisPacific Northwest National LaboratoryP.O. Box 999RichlandWA99352USA
| | - Oliver Y. Gutiérrez
- Institute for Integrated CatalysisPacific Northwest National LaboratoryP.O. Box 999RichlandWA99352USA
| | - Johannes A. Lercher
- Institute for Integrated CatalysisPacific Northwest National LaboratoryP.O. Box 999RichlandWA99352USA
- Department of Chemistry and Catalysis Research Center InstitutionTU MünchenLichtenbergstrasse 485747GarchingGermany
| |
Collapse
|
9
|
Sanyal U, Yuk SF, Koh K, Lee M, Stoerzinger K, Zhang D, Meyer LC, Lopez‐Ruiz JA, Karkamkar A, Holladay JD, Camaioni DM, Nguyen M, Glezakou V, Rousseau R, Gutiérrez OY, Lercher JA. Hydrogen Bonding Enhances the Electrochemical Hydrogenation of Benzaldehyde in the Aqueous Phase. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202008178] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Udishnu Sanyal
- Institute for Integrated Catalysis Pacific Northwest National Laboratory P.O. Box 999 Richland WA 99352 USA
| | - Simuck F. Yuk
- Institute for Integrated Catalysis Pacific Northwest National Laboratory P.O. Box 999 Richland WA 99352 USA
| | - Katherine Koh
- Institute for Integrated Catalysis Pacific Northwest National Laboratory P.O. Box 999 Richland WA 99352 USA
| | - Mal‐Soon Lee
- Institute for Integrated Catalysis Pacific Northwest National Laboratory P.O. Box 999 Richland WA 99352 USA
| | - Kelsey Stoerzinger
- Institute for Integrated Catalysis Pacific Northwest National Laboratory P.O. Box 999 Richland WA 99352 USA
- School of Chemical, Biological and Environmental Engineering Oregon State University Corvallis OR 97331 USA
| | - Difan Zhang
- Institute for Integrated Catalysis Pacific Northwest National Laboratory P.O. Box 999 Richland WA 99352 USA
| | - Laura C. Meyer
- Institute for Integrated Catalysis Pacific Northwest National Laboratory P.O. Box 999 Richland WA 99352 USA
| | - Juan A. Lopez‐Ruiz
- Institute for Integrated Catalysis Pacific Northwest National Laboratory P.O. Box 999 Richland WA 99352 USA
| | - Abhi Karkamkar
- Institute for Integrated Catalysis Pacific Northwest National Laboratory P.O. Box 999 Richland WA 99352 USA
| | - Jamie D. Holladay
- Institute for Integrated Catalysis Pacific Northwest National Laboratory P.O. Box 999 Richland WA 99352 USA
| | - Donald M. Camaioni
- Institute for Integrated Catalysis Pacific Northwest National Laboratory P.O. Box 999 Richland WA 99352 USA
| | - Manh‐Thuong Nguyen
- Institute for Integrated Catalysis Pacific Northwest National Laboratory P.O. Box 999 Richland WA 99352 USA
| | | | - Roger Rousseau
- Institute for Integrated Catalysis Pacific Northwest National Laboratory P.O. Box 999 Richland WA 99352 USA
| | - Oliver Y. Gutiérrez
- Institute for Integrated Catalysis Pacific Northwest National Laboratory P.O. Box 999 Richland WA 99352 USA
| | - Johannes A. Lercher
- Institute for Integrated Catalysis Pacific Northwest National Laboratory P.O. Box 999 Richland WA 99352 USA
- Department of Chemistry and Catalysis Research Center Institution TU München Lichtenbergstrasse 4 85747 Garching Germany
| |
Collapse
|
10
|
Lahive CW, Kamer PCJ, Lancefield CS, Deuss PJ. An Introduction to Model Compounds of Lignin Linking Motifs; Synthesis and Selection Considerations for Reactivity Studies. CHEMSUSCHEM 2020; 13:4238-4265. [PMID: 32510817 PMCID: PMC7540175 DOI: 10.1002/cssc.202000989] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Indexed: 05/31/2023]
Abstract
The development of fundamentally new valorization strategies for lignin plays a vital role in unlocking the true potential of lignocellulosic biomass as sustainable and economically compatible renewable carbon feedstock. In particular, new catalytic modification and depolymerization strategies are required. Progress in this field, past and future, relies for a large part on the application of synthetic model compounds that reduce the complexity of working with the lignin biopolymer. This aids the development of catalytic methodologies and in-depth mechanistic studies and guides structural characterization studies in the lignin field. However, due to the volume of literature and the piecemeal publication of methodology, the choice of suitable lignin model compounds is far from straight forward, especially for those outside the field and lacking a background in organic synthesis. For example, in catalytic depolymerization studies, a balance between synthetic effort and fidelity compared to the actual lignin of interest needs to be found. In this Review, we provide a broad overview of the model compounds available to study the chemistry of the main native linking motifs typically found in lignins from woody biomass, the synthetic routes and effort required to access them, and discuss to what extent these represent actual lignin structures. This overview can aid researchers in their selection of the most suitable lignin model systems for the development of emerging lignin modification and depolymerization technologies, maximizing their chances of successfully developing novel lignin valorization strategies.
Collapse
Affiliation(s)
- Ciaran W. Lahive
- Department of Chemical Engineering (ENTEG)University of GroningenNijenborgh 49747 AGGroningenNetherlands
- School of Chemistry and Biomedical Science Research ComplexUniversity of St. Andrews and EaStCHEMNorth HaughSt. AndrewsFifeKY16 9STUnited Kingdom
| | - Paul C. J. Kamer
- School of Chemistry and Biomedical Science Research ComplexUniversity of St. Andrews and EaStCHEMNorth HaughSt. AndrewsFifeKY16 9STUnited Kingdom
- Leibniz-Institut für Katalyse e.V.Albert-Einstein-Straße 29a18059RostockGermany
| | - Christopher S. Lancefield
- School of Chemistry and Biomedical Science Research ComplexUniversity of St. Andrews and EaStCHEMNorth HaughSt. AndrewsFifeKY16 9STUnited Kingdom
| | - Peter J. Deuss
- Department of Chemical Engineering (ENTEG)University of GroningenNijenborgh 49747 AGGroningenNetherlands
| |
Collapse
|
11
|
Li Y, Karlen SD, Demir B, Kim H, Luterbacher J, Dumesic JA, Stahl SS, Ralph J. Mechanistic Study of Diaryl Ether Bond Cleavage during Palladium-Catalyzed Lignin Hydrogenolysis. CHEMSUSCHEM 2020; 13:4487-4494. [PMID: 32202385 DOI: 10.1002/cssc.202000753] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Indexed: 06/10/2023]
Abstract
Hydrogenolysis has emerged as one of the most effective means of converting polymeric lignin into monoaromatic fragments of value. Reported yields may be higher than for other methods and can exceed the theoretical yields estimated from measures of the content of lignin's most readily cleaved alkyl-aryl ether bonds in β-ether units. The high yields suggest that other units in lignin are being cleaved. Diaryl ether units are important units in lignin, and their cleavage has been examined previously using simple model compounds, such as diphenyl ether. Herein, the hydrogenolysis of model compounds that closely resemble the native lignin 4-O-5 diaryl ether units was analyzed. The results provided unexpected insights into the reactivity and partial cleavage of these compounds. The models and lignin polymer produced not only monomers, but also unusual 1,3,5-meta-substituted aromatics that appear to be diagnostic for the presence and the cleavage of the 4-O-5 diaryl ether unit in lignin.
Collapse
Affiliation(s)
- Yanding Li
- Department of Biological Systems Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA
- DOE Great Lakes Bioenergy Research Center, Madison, WI, 53726, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA
| | - Steven D Karlen
- DOE Great Lakes Bioenergy Research Center, Madison, WI, 53726, USA
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Benginur Demir
- DOE Great Lakes Bioenergy Research Center, Madison, WI, 53726, USA
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Hoon Kim
- DOE Great Lakes Bioenergy Research Center, Madison, WI, 53726, USA
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Jeremy Luterbacher
- Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, Route Cantonale, 1015, Lausanne, Switzerland
| | - James A Dumesic
- DOE Great Lakes Bioenergy Research Center, Madison, WI, 53726, USA
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Shannon S Stahl
- DOE Great Lakes Bioenergy Research Center, Madison, WI, 53726, USA
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - John Ralph
- Department of Biological Systems Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA
- DOE Great Lakes Bioenergy Research Center, Madison, WI, 53726, USA
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| |
Collapse
|
12
|
Wang M, Zhao Y, Mei D, Bullock RM, Gutiérrez OY, Camaioni DM, Lercher JA. The Critical Role of Reductive Steps in the Nickel-Catalyzed Hydrogenolysis and Hydrolysis of Aryl Ether C-O Bonds. Angew Chem Int Ed Engl 2020; 59:1445-1449. [PMID: 31512341 PMCID: PMC7003888 DOI: 10.1002/anie.201909551] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 09/03/2019] [Indexed: 12/02/2022]
Abstract
The hydrogenolysis of the aromatic C-O bond in aryl ethers catalyzed by Ni was studied in decalin and water. Observations of a significant kinetic isotope effect (kH /kD =5.7) for the reactions of diphenyl ether under H2 and D2 atmosphere and a positive dependence of the rate on H2 chemical potential in decalin indicate that addition of H to the aromatic ring is involved in the rate-limiting step. All kinetic evidence points to the fact that H addition occurs concerted with C-O bond scission. DFT calculations also suggest a route consistent with these observations involving hydrogen atom addition to the ipso position of the phenyl ring concerted with C-O scission. Hydrogenolysis initiated by H addition in water is more selective (ca. 75 %) than reactions in decalin (ca. 30 %).
Collapse
Affiliation(s)
- Meng Wang
- Institute for Integrated CatalysisPacific Northwest National LaboratoryP.O. Box 999RichlandWA99352USA
| | - Yuntao Zhao
- School of Chemical Engineering and TechnologyTianjin UniversityTianjin300072China
| | - Donghai Mei
- School of Chemistry and Chemical EngineeringTianjin Polytechnic UniversityTianjin300387China
| | - R. Morris Bullock
- Institute for Integrated CatalysisPacific Northwest National LaboratoryP.O. Box 999RichlandWA99352USA
| | - Oliver Y. Gutiérrez
- Institute for Integrated CatalysisPacific Northwest National LaboratoryP.O. Box 999RichlandWA99352USA
| | - Donald M. Camaioni
- Institute for Integrated CatalysisPacific Northwest National LaboratoryP.O. Box 999RichlandWA99352USA
| | - Johannes A. Lercher
- Institute for Integrated CatalysisPacific Northwest National LaboratoryP.O. Box 999RichlandWA99352USA
- Department of Chemistry and Catalysis Research InstituteTU MünchenLichtenbergstrasse 485748GarchingGermany
| |
Collapse
|
13
|
Wang M, Zhao Y, Mei D, Bullock RM, Gutiérrez OY, Camaioni DM, Lercher JA. The Critical Role of Reductive Steps in the Nickel‐Catalyzed Hydrogenolysis and Hydrolysis of Aryl Ether C−O Bonds. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201909551] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Meng Wang
- Institute for Integrated Catalysis Pacific Northwest National Laboratory P.O. Box 999 Richland WA 99352 USA
| | - Yuntao Zhao
- School of Chemical Engineering and Technology Tianjin University Tianjin 300072 China
| | - Donghai Mei
- School of Chemistry and Chemical Engineering Tianjin Polytechnic University Tianjin 300387 China
| | - R. Morris Bullock
- Institute for Integrated Catalysis Pacific Northwest National Laboratory P.O. Box 999 Richland WA 99352 USA
| | - Oliver Y. Gutiérrez
- Institute for Integrated Catalysis Pacific Northwest National Laboratory P.O. Box 999 Richland WA 99352 USA
| | - Donald M. Camaioni
- Institute for Integrated Catalysis Pacific Northwest National Laboratory P.O. Box 999 Richland WA 99352 USA
| | - Johannes A. Lercher
- Institute for Integrated Catalysis Pacific Northwest National Laboratory P.O. Box 999 Richland WA 99352 USA
- Department of Chemistry and Catalysis Research Institute TU München Lichtenbergstrasse 4 85748 Garching Germany
| |
Collapse
|
14
|
van Muyden AP, Siankevich S, Yan N, Dyson PJ. Discovery of a Highly Active Catalyst for Hydrogenolysis of C−O Bonds via Systematic, Multi‐metallic Catalyst Screening. ChemCatChem 2019. [DOI: 10.1002/cctc.201900462] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Antoine P. van Muyden
- Institut des Sciences et Ingénierie ChimiquesÉcole Polytechnique Fédérale de Lausanne (EPFL) CH-1015 Lausanne Switzerland
| | - Sviatlana Siankevich
- Institut des Sciences et Ingénierie ChimiquesÉcole Polytechnique Fédérale de Lausanne (EPFL) CH-1015 Lausanne Switzerland
| | - Ning Yan
- Faculty of EngineeringUniversity of Singapore (NUS) 21 Lower Kent Ridge Road 119077 Singapore
| | - Paul J. Dyson
- Institut des Sciences et Ingénierie ChimiquesÉcole Polytechnique Fédérale de Lausanne (EPFL) CH-1015 Lausanne Switzerland
| |
Collapse
|
15
|
Wang M, Gutiérrez OY, Camaioni DM, Lercher JA. Palladium‐Catalyzed Reductive Insertion of Alcohols into Aryl Ether Bonds. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201709445] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Meng Wang
- Institute for Integrated Catalysis Pacific Northwest National Laboratory P.O. Box 999 Richland WA 99352 USA
| | - Oliver Y. Gutiérrez
- Institute for Integrated Catalysis Pacific Northwest National Laboratory P.O. Box 999 Richland WA 99352 USA
| | - Donald M. Camaioni
- Institute for Integrated Catalysis Pacific Northwest National Laboratory P.O. Box 999 Richland WA 99352 USA
| | - Johannes A. Lercher
- Institute for Integrated Catalysis Pacific Northwest National Laboratory P.O. Box 999 Richland WA 99352 USA
- Department of Chemistry and Catalysis Research Institute TU München Lichtenbergstrasse 4 85748 Garching Germany
| |
Collapse
|
16
|
Wang M, Gutiérrez OY, Camaioni DM, Lercher JA. Palladium‐Catalyzed Reductive Insertion of Alcohols into Aryl Ether Bonds. Angew Chem Int Ed Engl 2018; 57:3747-3751. [DOI: 10.1002/anie.201709445] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 12/07/2017] [Indexed: 11/05/2022]
Affiliation(s)
- Meng Wang
- Institute for Integrated Catalysis Pacific Northwest National Laboratory P.O. Box 999 Richland WA 99352 USA
| | - Oliver Y. Gutiérrez
- Institute for Integrated Catalysis Pacific Northwest National Laboratory P.O. Box 999 Richland WA 99352 USA
| | - Donald M. Camaioni
- Institute for Integrated Catalysis Pacific Northwest National Laboratory P.O. Box 999 Richland WA 99352 USA
| | - Johannes A. Lercher
- Institute for Integrated Catalysis Pacific Northwest National Laboratory P.O. Box 999 Richland WA 99352 USA
- Department of Chemistry and Catalysis Research Institute TU München Lichtenbergstrasse 4 85748 Garching Germany
| |
Collapse
|
17
|
Zeng H, Cao D, Qiu Z, Li CJ. Palladium-Catalyzed Formal Cross-Coupling of Diaryl Ethers with Amines: Slicing the 4-O
-5 Linkage in Lignin Models. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201712211] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Huiying Zeng
- The State Key Laboratory of Applied Organic Chemistry; Lanzhou University; 222 Tianshui Road Lanzhou 730000 P. R. China
| | - Dawei Cao
- The State Key Laboratory of Applied Organic Chemistry; Lanzhou University; 222 Tianshui Road Lanzhou 730000 P. R. China
| | - Zihang Qiu
- Department of Chemistry and FQRNT Centre for Green Chemistry and Catalysis; McGill University; 801 Sherbrooke St. West Montreal Quebec H3A 0B8 Canada
| | - Chao-Jun Li
- The State Key Laboratory of Applied Organic Chemistry; Lanzhou University; 222 Tianshui Road Lanzhou 730000 P. R. China
- Department of Chemistry and FQRNT Centre for Green Chemistry and Catalysis; McGill University; 801 Sherbrooke St. West Montreal Quebec H3A 0B8 Canada
| |
Collapse
|
18
|
Zeng H, Cao D, Qiu Z, Li CJ. Palladium-Catalyzed Formal Cross-Coupling of Diaryl Ethers with Amines: Slicing the 4-O
-5 Linkage in Lignin Models. Angew Chem Int Ed Engl 2018; 57:3752-3757. [PMID: 29384588 DOI: 10.1002/anie.201712211] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 01/22/2018] [Indexed: 11/09/2022]
Affiliation(s)
- Huiying Zeng
- The State Key Laboratory of Applied Organic Chemistry; Lanzhou University; 222 Tianshui Road Lanzhou 730000 P. R. China
| | - Dawei Cao
- The State Key Laboratory of Applied Organic Chemistry; Lanzhou University; 222 Tianshui Road Lanzhou 730000 P. R. China
| | - Zihang Qiu
- Department of Chemistry and FQRNT Centre for Green Chemistry and Catalysis; McGill University; 801 Sherbrooke St. West Montreal Quebec H3A 0B8 Canada
| | - Chao-Jun Li
- The State Key Laboratory of Applied Organic Chemistry; Lanzhou University; 222 Tianshui Road Lanzhou 730000 P. R. China
- Department of Chemistry and FQRNT Centre for Green Chemistry and Catalysis; McGill University; 801 Sherbrooke St. West Montreal Quebec H3A 0B8 Canada
| |
Collapse
|
19
|
New Members and Foreign Members of the National Academy of Engineering. Angew Chem Int Ed Engl 2017; 56:7711-7712. [PMID: 28605570 DOI: 10.1002/anie.201705180] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
20
|
|