1
|
Mier LJ, Adam G, Kumar S, Stauch T. The Mechanism of Flex-Activation in Mechanophores Revealed By Quantum Chemistry. Chemphyschem 2020; 21:2402-2406. [PMID: 32964598 PMCID: PMC7702058 DOI: 10.1002/cphc.202000739] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Indexed: 12/11/2022]
Abstract
Flex-activated mechanophores can be used for small-molecule release in polymers under tension by rupture of covalent bonds that are orthogonal to the polymer main chain. Using static and dynamic quantum chemical methods, we here juxtapose three different mechanical deformation modes in flex-activated mechanophores (end-to-end stretching, direct pulling of the scissile bonds, bond angle bendings) with the aim of proposing ways to optimize the efficiency of flex-activation in experiments. It is found that end-to-end stretching, which is a traditional approach to activate mechanophores in polymers, does not trigger flex-activation, whereas direct pulling of the scissile bonds or displacement of adjacent bond angles are efficient methods to achieve this goal. Based on the structural, energetic and electronic effects responsible for these observations, we propose ways of weakening the scissile bonds experimentally to increase the efficiency of flex-activation.
Collapse
Affiliation(s)
- Lennart J. Mier
- University of BremenInstitute for Physical and Theoretical ChemistryLeobener Straße NW2D-28359BremenGermany
- Current address: University of Bremen, UFTLeobener Str. 6D-28359BremenGermany
| | - Gheorghe Adam
- University of BremenInstitute for Physical and Theoretical ChemistryLeobener Straße NW2D-28359BremenGermany
| | - Sourabh Kumar
- University of BremenInstitute for Physical and Theoretical ChemistryLeobener Straße NW2D-28359BremenGermany
| | - Tim Stauch
- University of BremenInstitute for Physical and Theoretical ChemistryLeobener Straße NW2D-28359BremenGermany
- University of BremenBremen Center for Computational Materials ScienceAm Fallturm 1D-28359BremenGermany
- University of BremenMAPEX Center for Materials and ProcessesBibliothekstraße 1D-28359BremenGermany
| |
Collapse
|
2
|
Qiu L, Peña-Alvarez M, Baonza VG, Taravillo M, Casado J, Kertesz M. Mechanochemistry in [6]Cycloparaphenylene: A Combined Raman Spectroscopy and Density Functional Theory Study. Chemphyschem 2018; 19:1903-1916. [PMID: 29700956 DOI: 10.1002/cphc.201800319] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Indexed: 11/09/2022]
Abstract
Raman spectroscopy under high pressures up to 10 GPa and density functional computations up to 30 GPa are combined to obtain insights into the behavior of a prototypical nanohoop conjugated molecule, [6]cycloparaphenylene ([6]CPP). Upon increasing pressure, the nanohoop undergoes deformations, first reversible ovalization and then at even higher pressures aggregates are formed. This irreversible aggregation is caused by the formation of new intermolecular σ-bonds. Frequencies and derivatives of the Raman frequency shifts as a function of pressure are well reproduced by the computations. The frequency behavior is tied to changes in aromatic/quinonoid character of the nanohoop. The modeling at moderate high pressures reveals the deformation of the [6]CPP molecules into oval-like and peanut-like shapes. Surprisingly the pressure derivatives of the observed Raman mode shifts undergo a sudden change around a pressure value that is common to all Raman modes, indicating an underlying geometrical change extended over the whole molecule that is interpreted by the computational modeling. Simulations predict that under even larger deformations caused by higher pressures, oligomerization reactions would be triggered. Our simulations demonstrate that these transformations would occur regardless of the solvent, however pressures at which they happen are influenced by solvent molecules encapsulated in the interior of the [6]CPP.
Collapse
Affiliation(s)
- Lili Qiu
- Department of Chemistry and Institute of Soft Matter, Georgetown University, 37th and O Streets, NW, Washington, D.C., 20057-1227, USA
| | - Miriam Peña-Alvarez
- MALTA-Consolider Team, Department of Physical Chemistry I, Chemistry Faculty, University Complutense of Madrid, 28040, Madrid, Spain
- Centre for Science at Extreme Conditions, The University of Edinburgh, King's Buildings, Edinburgh, UK
| | - Valentín G Baonza
- MALTA-Consolider Team, Department of Physical Chemistry I, Chemistry Faculty, University Complutense of Madrid, 28040, Madrid, Spain
| | - Mercedes Taravillo
- MALTA-Consolider Team, Department of Physical Chemistry I, Chemistry Faculty, University Complutense of Madrid, 28040, Madrid, Spain
| | - Juan Casado
- Department of Physical Chemistry, University of Málaga, CEI Andalucía Tech, Campus de Teatinos s/n, 29071-, Málaga, Spain
| | - Miklos Kertesz
- Department of Chemistry and Institute of Soft Matter, Georgetown University, 37th and O Streets, NW, Washington, D.C., 20057-1227, USA
| |
Collapse
|