1
|
Li Y, Yang Z, Jalil AT, Saleh MM, Wu B. In Vivo and In Vitro Biocompatibility Study of CuS Nanoparticles: Photosensitizer for Glioblastoma Photothermal Therapy. Appl Biochem Biotechnol 2023:10.1007/s12010-023-04313-3. [PMID: 36652089 DOI: 10.1007/s12010-023-04313-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/06/2023] [Indexed: 01/19/2023]
Abstract
Although photothermal treatment (PTT) has made significant progress in the fight against cancer, certain types of malignant tumors are still difficult to eradicate. PTT uses photothermal transforming agents to absorb NIR light and convert it to thermal energy, causing cancer cell death. In this study, we synthesized alginate (Alg)-coated CuS nanoparticles (CuS@Alg) as photothermal transforming agents to kill glioblastoma cancer cells. Nanoparticles were synthesized via a facile method, then, were characterized with different techniques such as ultraviolet-visible spectroscopy (UV-Vis), Fourier transform infrared (FTIR), X-ray diffraction analysis (XRD), transmission electron microscopy (TEM), and dynamic light scattering (DLS). Nanoparticles show high stability, and are monodisperse. CuS@Alg was discovered to have a spherical shape, a hydrodynamic size of about 19.93 nm, and a zeta potential of - 9.74 mV. CuS@Alg is able to increase temperature of medium under NIR light. Importantly, in vitro investigations show that PTT based on CuS@Alg has a strong theraputic impact, resulting in much high effectiveness. The LD50 and histopathology assays were used to confirm the NPs' non-toxicity in vivo. Results from an in vivo subacute toxicity investigation showed that the fabricated NPs were perfectly safe to biomedical usage.
Collapse
Affiliation(s)
- Yin Li
- Department of Neurosurgery, Zhen'an Hospital, Shangluo, 711500, China
| | - Zhangkai Yang
- Department of Neurosurgery, Xi'an Children's Hospital, Xi'an, 710000, China
| | - Abduladheem Turki Jalil
- Medical Laboratory Techniques Department, Al-Mustaqbal University College, Babylon, Hilla, 51001, Iraq
| | - Marwan Mahmood Saleh
- Department of Biophysics, College of Applied Sciences, University of Anbar, Ramadi, Iraq
- Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq
| | - Bin Wu
- Department of Outpatient Comprehensive Surgery, Xi'an Children's Hospital, Xi'an, 710000, China.
| |
Collapse
|
2
|
|
3
|
Liu B, Singh K, Gong S, Canakci M, Osborne BA, Thayumanavan S. Protein–Antibody Conjugates (PACs): A Plug‐and‐Play Strategy for Covalent Conjugation and Targeted Intracellular Delivery of Pristine Proteins. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202103106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Bin Liu
- Department of Chemistry University of Massachusetts Amherst MA 01003 USA
| | - Khushboo Singh
- Department of Chemistry University of Massachusetts Amherst MA 01003 USA
- Center for Bioactive Delivery Institute for Applied Life Sciences University of Massachusetts Amherst MA 01003 USA
| | - Shuai Gong
- Department of Chemistry University of Massachusetts Amherst MA 01003 USA
- Center for Bioactive Delivery Institute for Applied Life Sciences University of Massachusetts Amherst MA 01003 USA
| | - Mine Canakci
- Molecular and Cellular Biology Program University of Massachusetts Amherst MA 01003 USA
- Center for Bioactive Delivery Institute for Applied Life Sciences University of Massachusetts Amherst MA 01003 USA
| | - Barbara A. Osborne
- Molecular and Cellular Biology Program University of Massachusetts Amherst MA 01003 USA
- Center for Bioactive Delivery Institute for Applied Life Sciences University of Massachusetts Amherst MA 01003 USA
- Department of Veterinary and Animal Sciences University of Massachusetts Amherst MA 01003 USA
| | - S. Thayumanavan
- Department of Chemistry University of Massachusetts Amherst MA 01003 USA
- Molecular and Cellular Biology Program University of Massachusetts Amherst MA 01003 USA
- Center for Bioactive Delivery Institute for Applied Life Sciences University of Massachusetts Amherst MA 01003 USA
| |
Collapse
|
4
|
Liu B, Singh K, Gong S, Canakci M, Osborne B, Thayumanavan S. Protein-Antibody Conjugates (PACs): A Plug-and-Play Strategy for Covalent Conjugation and Targeted Intracellular Delivery of Pristine Proteins. Angew Chem Int Ed Engl 2021; 60:12813-12818. [PMID: 33768625 PMCID: PMC8762996 DOI: 10.1002/anie.202103106] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Indexed: 12/17/2022]
Abstract
We report here on protein-antibody conjugates (PACs) that are used for antibody-directed delivery of protein therapeutics to specific cells. PACs have the potential to judiciously combine the merits of two prolific therapeutic approaches-biologics and antibody-drug conjugates. We utilize spherical polymer brushes to construct PACs using the combination of two simple and efficient functionally orthogonal click chemistries. In addition to the synthesis and characterization of these nanoparticles, we demonstrate that PACs are indeed capable of specifically targeting cells based on the presence of target antigen on the cell surface to deliver proteins. The potentially broad adaptability of PACs opens up new opportunities for targeted biologics in therapeutics and sensing.
Collapse
Affiliation(s)
- Bin Liu
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, USA
| | - Khushboo Singh
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, USA
- Center for Bioactive Delivery, Institute for Applied Life Sciences, University of Massachusetts, Amherst, Massachusetts 01003, USA
| | - Shuai Gong
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, USA
- Center for Bioactive Delivery, Institute for Applied Life Sciences, University of Massachusetts, Amherst, Massachusetts 01003, USA
| | - Mine Canakci
- Molecular and Cellular Biology Program, University of Massachusetts, Amherst, Massachusetts 01003, USA
- Center for Bioactive Delivery, Institute for Applied Life Sciences, University of Massachusetts, Amherst, Massachusetts 01003, USA
| | - Barbara Osborne
- Molecular and Cellular Biology Program, University of Massachusetts, Amherst, Massachusetts 01003, USA
- Center for Bioactive Delivery, Institute for Applied Life Sciences, University of Massachusetts, Amherst, Massachusetts 01003, USA
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, Massachusetts 01003, USA
| | - S. Thayumanavan
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, USA
- Molecular and Cellular Biology Program, University of Massachusetts, Amherst, Massachusetts 01003, USA
- Center for Bioactive Delivery, Institute for Applied Life Sciences, University of Massachusetts, Amherst, Massachusetts 01003, USA
| |
Collapse
|
5
|
Xu J, Wen L, Zhang F, Lin W, Zhang L. Self-assembly of cyclic grafted copolymers with rigid rings and their potential as drug nanocarriers. J Colloid Interface Sci 2021; 597:114-125. [PMID: 33892419 DOI: 10.1016/j.jcis.2021.03.139] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 03/20/2021] [Accepted: 03/24/2021] [Indexed: 01/23/2023]
Abstract
Enhancing the performance of polymer micelles by purposeful regulation of their structures is a challenging topic that receives widespread attention. In this study, we systematically conduct a comparative study between cyclic grafted copolymers with rigid and flexible rings in the self-assembly behavior via dissipative particle dynamics (DPD) simulation. With a focus on the possible stacking ways of rigid rings, we propose the energy-driven packing mechanism of cyclic grafted copolymers with rigid rings. For cyclic grafted copolymers with large ring size (14 and 21-membered rings), rigid rings present a novel channel-layer-combination layout, which is determined by the balance between the potential energy of micelles (Emicelle) and the interaction energy between water and micelles (Eint). Based on this mechanism, we further regulate a series of complex self-assembling structures, including curved rod-like, T-shape, annular and helical micelles. Compared with flexible copolymers, cyclic grafted copolymers with rigid rings provide a larger and loose hydrophobic core and higher structural stability with micelles due to the unique packing way of rigid rings. Therefore, their micelles have a great potential as drug nanocarriers. They possess a better drug loading capacity and disassemble more quickly than flexible counterparts under acidic tumor microenvironment. Furthermore, the endocytosis kinetics of rigid micelles is faster than the flexible counterparts for the adsorption and wrapping process. This study may provide a reasonable idea of structural design for polymer micelles to enhance their performance in biomedical applications.
Collapse
Affiliation(s)
- Jianchang Xu
- Guangdong Provincial Key Lab of Green Chemical Product Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Liyang Wen
- Guangdong Provincial Key Lab of Green Chemical Product Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Fusheng Zhang
- Guangdong Provincial Key Lab of Green Chemical Product Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Wenjing Lin
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China.
| | - Lijuan Zhang
- Guangdong Provincial Key Lab of Green Chemical Product Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China.
| |
Collapse
|
6
|
Liénard R, De Winter J, Coulembier O. Cyclic polymers: Advances in their synthesis, properties, and biomedical applications. JOURNAL OF POLYMER SCIENCE 2020. [DOI: 10.1002/pol.20200236] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Romain Liénard
- Laboratory of Polymeric and Composite Materials (LPCM) Center of Innovation and Research in Materials and Polymers (CIRMAP), University of Mons Mons Belgium
- Organic Synthesis and Mass Spectrometry Laboratory (S2MOs) Interdisciplinary Center for Mass Spectrometry (CISMa), University of Mons Mons Belgium
| | - Julien De Winter
- Organic Synthesis and Mass Spectrometry Laboratory (S2MOs) Interdisciplinary Center for Mass Spectrometry (CISMa), University of Mons Mons Belgium
| | - Olivier Coulembier
- Laboratory of Polymeric and Composite Materials (LPCM) Center of Innovation and Research in Materials and Polymers (CIRMAP), University of Mons Mons Belgium
| |
Collapse
|
7
|
Brush-modified materials: Control of molecular architecture, assembly behavior, properties and applications. Prog Polym Sci 2020. [DOI: 10.1016/j.progpolymsci.2019.101180] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
8
|
Ranneh A, Takemoto H, Sakuma S, Awaad A, Nomoto T, Mochida Y, Matsui M, Tomoda K, Naito M, Nishiyama N. An Ethylenediamine‐based Switch to Render the Polyzwitterion Cationic at Tumorous pH for Effective Tumor Accumulation of Coated Nanomaterials. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201801641] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Abdul‐Hackam Ranneh
- Laboratory for Chemistry and Life Science, Institute of Innovative Research Tokyo Institute of Technology R1-11, 4259, Nagatsuta, Midori-ku Yokohama Kanagawa 226-8503 Japan
| | - Hiroyasu Takemoto
- Laboratory for Chemistry and Life Science, Institute of Innovative Research Tokyo Institute of Technology R1-11, 4259, Nagatsuta, Midori-ku Yokohama Kanagawa 226-8503 Japan
| | - Shunya Sakuma
- Laboratory for Chemistry and Life Science, Institute of Innovative Research Tokyo Institute of Technology R1-11, 4259, Nagatsuta, Midori-ku Yokohama Kanagawa 226-8503 Japan
| | - Aziz Awaad
- Laboratory for Chemistry and Life Science, Institute of Innovative Research Tokyo Institute of Technology R1-11, 4259, Nagatsuta, Midori-ku Yokohama Kanagawa 226-8503 Japan
- Department of Zoology Faculty of Science Sohag University The University Street Naser City Sohag 82524 Egypt
| | - Takahiro Nomoto
- Laboratory for Chemistry and Life Science, Institute of Innovative Research Tokyo Institute of Technology R1-11, 4259, Nagatsuta, Midori-ku Yokohama Kanagawa 226-8503 Japan
| | - Yuki Mochida
- Innovation Center of NanoMedicine (iCONM) Kawasaki Institute of Industrial Promotion 3-25-14 Tonomachi Kawasaki-ku Kawasaki 212-0821 Japan
| | - Makoto Matsui
- Laboratory for Chemistry and Life Science, Institute of Innovative Research Tokyo Institute of Technology R1-11, 4259, Nagatsuta, Midori-ku Yokohama Kanagawa 226-8503 Japan
| | - Keishiro Tomoda
- Laboratory for Chemistry and Life Science, Institute of Innovative Research Tokyo Institute of Technology R1-11, 4259, Nagatsuta, Midori-ku Yokohama Kanagawa 226-8503 Japan
| | - Mitsuru Naito
- Center for Disease Biology and Integrative Medicine Graduate School of Medicine The University of Tokyo 7-3-1 Hongo Bunkyo-ku Tokyo 113-0033 Japan
| | - Nobuhiro Nishiyama
- Laboratory for Chemistry and Life Science, Institute of Innovative Research Tokyo Institute of Technology R1-11, 4259, Nagatsuta, Midori-ku Yokohama Kanagawa 226-8503 Japan
- Innovation Center of NanoMedicine (iCONM) Kawasaki Institute of Industrial Promotion 3-25-14 Tonomachi Kawasaki-ku Kawasaki 212-0821 Japan
| |
Collapse
|
9
|
Ranneh AH, Takemoto H, Sakuma S, Awaad A, Nomoto T, Mochida Y, Matsui M, Tomoda K, Naito M, Nishiyama N. An Ethylenediamine-based Switch to Render the Polyzwitterion Cationic at Tumorous pH for Effective Tumor Accumulation of Coated Nanomaterials. Angew Chem Int Ed Engl 2018; 57:5057-5061. [PMID: 29512262 DOI: 10.1002/anie.201801641] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Indexed: 02/06/2023]
Abstract
Polyzwitterions are employed as coating polymers for biomaterials to induce an antifouling property on the surface. Fine-tuning the betaine structure switches the antifouling property to be interactive with anionic tissue constituents in response to a tumorous pH gradient. The ethylenediamine moiety in the carboxybetaine enabled stepwise protonation and initiated the di-protonation process around tumorous pH (6.5). The net charge of the developed polyzwitterion (PGlu(DET-Car)) was thus neutral at pH 7.4 for antifouling, but was cationic at pH 6.5 for interaction with anionic constituents. Quantum dots coated with PGlu(DET-Car) exhibited comparable stealth and enhanced tumor accumulation relative to the PEG system. The present study provides a novel design of smart switchable polyzwitterion based on a precise control of the net charge.
Collapse
Affiliation(s)
- Abdul-Hackam Ranneh
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, R1-11, 4259, Nagatsuta, Midori-ku, Yokohama, Kanagawa, 226-8503, Japan
| | - Hiroyasu Takemoto
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, R1-11, 4259, Nagatsuta, Midori-ku, Yokohama, Kanagawa, 226-8503, Japan
| | - Shunya Sakuma
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, R1-11, 4259, Nagatsuta, Midori-ku, Yokohama, Kanagawa, 226-8503, Japan
| | - Aziz Awaad
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, R1-11, 4259, Nagatsuta, Midori-ku, Yokohama, Kanagawa, 226-8503, Japan.,Department of Zoology, Faculty of Science, Sohag University, The University Street, Naser City, Sohag, 82524, Egypt
| | - Takahiro Nomoto
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, R1-11, 4259, Nagatsuta, Midori-ku, Yokohama, Kanagawa, 226-8503, Japan
| | - Yuki Mochida
- Innovation Center of NanoMedicine (iCONM), Kawasaki Institute of Industrial Promotion, 3-25-14 Tonomachi, Kawasaki-ku, Kawasaki, 212-0821, Japan
| | - Makoto Matsui
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, R1-11, 4259, Nagatsuta, Midori-ku, Yokohama, Kanagawa, 226-8503, Japan
| | - Keishiro Tomoda
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, R1-11, 4259, Nagatsuta, Midori-ku, Yokohama, Kanagawa, 226-8503, Japan
| | - Mitsuru Naito
- Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Nobuhiro Nishiyama
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, R1-11, 4259, Nagatsuta, Midori-ku, Yokohama, Kanagawa, 226-8503, Japan.,Innovation Center of NanoMedicine (iCONM), Kawasaki Institute of Industrial Promotion, 3-25-14 Tonomachi, Kawasaki-ku, Kawasaki, 212-0821, Japan
| |
Collapse
|
10
|
Zhang W, Tung CH. Real-Time Visualization of Lysosome Destruction Using a Photosensitive Toluidine Blue Nanogel. Chemistry 2018; 24:2089-2093. [PMID: 29314346 DOI: 10.1002/chem.201705697] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Indexed: 01/08/2023]
Abstract
Breaking the lysosome helps its sequestered payloads access their molecular targets in cells and thus enhances the intracellular drug delivery. Current strategies for lysosomal escape involve direct physical interactions with the lipid membrane. These interactions pose a systemic toxicity and uncontrolled membrane rupture risk. Here, we report a light-detonated lysosome disruption using a hyaluronan (HA) nanogel packed with toludine blue (TB). The HA/TB nanogel is concentrated within the lysosomes. The applied light assists TB in generating reactive oxygen species and destroying the lysosome in situ, both in cells and isolated lysosomes. Real time fluorescent tracking reveals that quenched TB fluorescence recovers along with lysosome explosion, relocates to the nucleus, and is presented as a fluorescent sparkling in cells. This HA/TB, composed of all clinically approved materials, represents a biocompatible and facile strategy to "bomb" lysosomes in a spatiotemporally controlled fashion.
Collapse
Affiliation(s)
- Weiqi Zhang
- Molecular Imaging Innovations Institute, Department of Radiology, Weill Cornell Medicine, 413 East 69th Street, Box 290, New York, NY, 10021, USA
| | - Ching-Hsuan Tung
- Molecular Imaging Innovations Institute, Department of Radiology, Weill Cornell Medicine, 413 East 69th Street, Box 290, New York, NY, 10021, USA
| |
Collapse
|
11
|
Arras J, Bräse S. The World Needs New Colors: Cutting Edge Mobility Focusing on Long Persistent Luminescence Materials. CHEMPHOTOCHEM 2018. [DOI: 10.1002/cptc.201700215] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Janet Arras
- Institut für Organische Chemie, KIT-Campus Süd; Fritz-Haber-Weg 6 76131 Karlsruhe Germany
- Institut für Anorganische Chemie, KIT-Campus Süd; Engesserstr. 15 76131 Karlsruhe Germany
| | - Stefan Bräse
- Institut für Organische Chemie, KIT-Campus Süd; Fritz-Haber-Weg 6 76131 Karlsruhe Germany
- Institut für Toxikologie und Genetik (ITG), KIT-Campus Nord; Hermann-von-Helmholtz Platz 1 76344 Eggenstein-Leopoldshafen Deutschland
- Materialwissenschaftliches Zentrum für Energiesysteme, KIT-Campus Süd; Straße am Forum 7 76131 Karlsruhe Deutschland
| |
Collapse
|
12
|
Verbraeken B, Hoogenboom R. Cyclische Polymere: von einer wissenschaftlichen Kuriosität zu modernen Materialien für die Genübertragung und Oberflächenmodifikation. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201703418] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Bart Verbraeken
- Supramolecular Chemistry Group; Department of Organic and Macromolecular Chemistry; Ghent University; Krijgslaan 281-S4 9000 Ghent Belgium
| | - Richard Hoogenboom
- Supramolecular Chemistry Group; Department of Organic and Macromolecular Chemistry; Ghent University; Krijgslaan 281-S4 9000 Ghent Belgium
| |
Collapse
|
13
|
Verbraeken B, Hoogenboom R. Cyclic Polymers: From Scientific Curiosity to Advanced Materials for Gene Delivery and Surface Modification. Angew Chem Int Ed Engl 2017; 56:7034-7036. [DOI: 10.1002/anie.201703418] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Indexed: 11/09/2022]
Affiliation(s)
- Bart Verbraeken
- Supramolecular Chemistry Group; Department of Organic and Macromolecular Chemistry; Ghent University; Krijgslaan 281-S4 9000 Ghent Belgium
| | - Richard Hoogenboom
- Supramolecular Chemistry Group; Department of Organic and Macromolecular Chemistry; Ghent University; Krijgslaan 281-S4 9000 Ghent Belgium
| |
Collapse
|